• 제목/요약/키워드: Online fault diagnosis

검색결과 28건 처리시간 0.025초

전기신호를 이용한 전동기 온라인 고장진단 (Online Fault Diagnosis of Motor Using Electric Signatures)

  • 김낙교;임정환
    • 전기학회논문지
    • /
    • 제59권10호
    • /
    • pp.1882-1888
    • /
    • 2010
  • It is widely known that ESA(Electric Signature Analysis) method is very useful one for fault diagnosis of an induction motor. Online fault diagnosis system of induction motors using LabVIEW is proposed to detect the fault of broken rotor bars and shorted turns in stator. This system is not model-based system of induction motor but LabVIEW-based fault diagnosis system using FFT spectrum of stator current in faulty motor without estimating of motor parameters. FFT of stator current in faulty induction motor is measured and compared with various reference fault data in data base to diagnose the fault. This paper is focused on to predict and diagnose of the health state of induction motors in steady state. Also, it can be given to motor operator and maintenance team in order to enhance an availability and maintainability of induction motors. Experimental results are demonstrated that the proposed system is very useful to diagnose the fault and to implement the predictive maintenance of induction motors.

미지입력을 포함한 시스템의 관측기 기반 견실고장진단 및 재구성 적응제어 (Observer-Based Robust Fault Diagnosis and Reconfigurable Adaptive Control for Systems with Unknown Inputs)

  • 최재원;이승우;서영수
    • 제어로봇시스템학회논문지
    • /
    • 제8권11호
    • /
    • pp.928-934
    • /
    • 2002
  • A natural way to cope with fault tolerant control (FTC) problems is to modify the control parameters according to an online identification of the system parameters when a fault occurs. However. due to not only difficulties Inherent to the online multivariable identification in closed-loop systems, such as modeling errors, noise or the lack of excitation signals, but also long time requirement to identify the post-fault system and implemeutation of control problems during the identification process, we propose an alternative approach based on the observer-based fault detection and isolation (FDI) and model reference adaptive control (MRAC). The proposed robust fault diagnosis method is based on a bank of observers. We also propose a model reference adaptive control with changeable reference models according to the occurred faults. Simulation results of a flight control example show the validity and applicability of the proposed algorithms.

온라인 확률분포 추정기법을 이용한 확률모델 기반 유도전동기의 고장진단 시스템 (Stochastic Model based Fault Diagnosis System of Induction Motors using Online Probability Density Estimation)

  • 조현철;김광수;이권순
    • 전기학회논문지
    • /
    • 제57권10호
    • /
    • pp.1847-1853
    • /
    • 2008
  • This paper presents stochastic methodology based fault detection algorithm for induction motor systems. We measure current of healthy induction motors by means of hall sensor systems and then establish its probability distribution. We propose online probability density estimation which is effective in real-time implementation due to its simplicity and low computational burden. In addition, we accomplish theoretical analysis to demonstrate convergence property of the proposed estimation by using statistical convergence and system stability theory. We apply our fault diagnosis approach to three-phase induction motors and achieve real-time experiment for evaluating its reliability and practicability in industrial fields.

지능형 도로정보체계의 유지관리 지식기반 구축을 위한 온라인 고장검출 시스템 연구 (A Study on the Online Fault Detection System to construct the knowledge based Maintenance System of Intelligent Highway Information System)

  • 류승기;최도혁;최대순;문학룡;김영춘;홍규장
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 B
    • /
    • pp.677-679
    • /
    • 1999
  • This paper introduces a implementation of fault detection for national highway line 3. Fault detection system was installed and operated on national highway line 3, environmental elements caused by abnormal status or faults has often happened. Therefore, the function of fault detection system is to speedy notify fault site, cause as well as scale of fault to manager. Though the fault detection and diagnosis system has been imported in the field of process of water and electric power, it is just beginning step in the field of ITS(Intelligent Transportation Systems). In general, Maintenance system is performed the online/offline process of detection, diagnosis and measure. This paper is studied online detection process, which is realtime remote detection.

  • PDF

Fuzzy Petri-net Approach to Fault Diagnosis in Power Systems Using the Time Sequence Information of Protection System

  • Roh, Myong-Gyun;Hong, Sang-Eun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1727-1731
    • /
    • 2003
  • In this paper we proposed backward fuzzy Petri-net to diagnoses faults in power systems by using the time sequence information of protection system. As the complexity of power systems increases, especially in the case of multiple faults or incorrect operation of protective devices, fault diagnosis requires new and systematic methods to the reasoning process, which improves both its accuracy and its efficiency. The fuzzy Petri-net models of protection system are composed of the operating process of protective devices and the fault diagnosis process. Fault diagnosis model, which makes use of the nature of fuzzy Petri-net, is developed to overcome the drawbacks of methods that depend on operator knowledge. The proposed method can reduce processing time and increase accuracy when compared with the traditional methods. And also this method covers online processing of real-time data from SCADA (Supervisory Control and Data Acquisition)

  • PDF

Fault Diagnosis of Three-Phase PWM Inverters Using Wavelet and SVM

  • Kim, Dong-Eok;Lee, Dong-Choon
    • Journal of Power Electronics
    • /
    • 제9권3호
    • /
    • pp.377-385
    • /
    • 2009
  • In this paper, a diagnosis method for switch open-circuit faults in three-phase PWM inverters is proposed, which employs support vector machine (SVM) as classifying method. At first, a discrete wavelet transform (DWT) is used to detect a discontinuity of currents due to the fault, and then the features for fault diagnosis are extracted. Next, these features are employed as inputs for the SVM training. After training, the SVM produces an optimized boundary which is used identifying the fault. Finally, the fault classification is performed online with instantaneous features. The experimental results have verified the validity of the proposed estimation algorithm.

페트리네트를 이용한 전력계통의 보호시스템 모델링과 고장진단 (Protection Systems Modeling and Fault Diagnosis of Power System Using Petri Nets)

  • 최진묵;노명균;홍상은;오용택
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 C
    • /
    • pp.1136-1138
    • /
    • 1999
  • This paper describes a new method of the modeling of protection system and fault diagnosis in power systems using Petri nets. The Petri net models of protection system are compose of the operating process of protective devices and the fault diagnosis process. Fault diagnosis model which makes use of the nature of Petri net is developed to overcome the drawbacks of methods that depend on operator knowledge. The proposed method can reduce processing time and increase accuracy when compared with the traditional methods. And also this method covers online processing of real-time data from SCADA.

  • PDF

An Application of Support Vector Machines for Fault Diagnosis

  • Hai Pham Minh;Phuong Tu Minh
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2004년도 ICEIC The International Conference on Electronics Informations and Communications
    • /
    • pp.371-375
    • /
    • 2004
  • Fault diagnosis is one of the most studied problems in process engineering. Recently, great research interest has been devoted to approaches that use classification methods to detect faults. This paper presents an application of a newly developed classification method - support vector machines - for fault diagnosis in an industrial case. A real set of operation data of a motor pump was used to train and test the support vector machines. The experiment results show that the support vector machines give higher correct detection rate of faults in comparison to rule-based diagnostics. In addition, the studied method can work with fewer training instances, what is important for online diagnostics.

  • PDF

Industrial Process Monitoring and Fault Diagnosis Based on Temporal Attention Augmented Deep Network

  • Mu, Ke;Luo, Lin;Wang, Qiao;Mao, Fushun
    • Journal of Information Processing Systems
    • /
    • 제17권2호
    • /
    • pp.242-252
    • /
    • 2021
  • Following the intuition that the local information in time instances is hardly incorporated into the posterior sequence in long short-term memory (LSTM), this paper proposes an attention augmented mechanism for fault diagnosis of the complex chemical process data. Unlike conventional fault diagnosis and classification methods, an attention mechanism layer architecture is introduced to detect and focus on local temporal information. The augmented deep network results preserve each local instance's importance and contribution and allow the interpretable feature representation and classification simultaneously. The comprehensive comparative analyses demonstrate that the developed model has a high-quality fault classification rate of 95.49%, on average. The results are comparable to those obtained using various other techniques for the Tennessee Eastman benchmark process.

PVA를 이용한 산업용 모터 고장진단 모니터링 시스템의 가시성을 높이는 방법 (Method for High-visibility of Online Monitoring and Fault Diagnosis System for Industrial Motor using PVA)

  • 고영진;강인원
    • 대한안전경영과학회지
    • /
    • 제22권1호
    • /
    • pp.15-21
    • /
    • 2020
  • Industrial Motors diagnostic equipment is highly dependent on the automation system, so if there are defects in the automation equipment, it can only rely on the operator's intuitive judgment.To help with intuitive judgment, Park's Vactor Approach(PVA) represents the current signal as a pattern of circles, so it can tell if a fault occurs when the circle is distorted. However, the failure to judge the degree of distortion of the circle pattern is the basis of the fault, so it will face difficulties. In this paper, in order to compare the faults of PVA, the period of d-axis current of PVA pulsation was mastered, so that two phase differences occurred in the same signal source. Through experiments, it is confirmed that this is a 90 degree cross formation of PVA, which is convenient for judging from the vision that there is no fault, thus helping the operator to make intuitive judgment.