• Title/Summary/Keyword: Online clustering

Search Result 108, Processing Time 0.031 seconds

Nonlinear intelligent control systems subjected to earthquakes by fuzzy tracking theory

  • Z.Y. Chen;Y.M. Meng;Ruei-Yuan Wang;Timothy Chen
    • Smart Structures and Systems
    • /
    • v.33 no.4
    • /
    • pp.291-300
    • /
    • 2024
  • Uncertainty of the model, system delay and drive dynamics can be considered as normal uncertainties, and the main source of uncertainty in the seismic control system is related to the nature of the simulated seismic error. In this case, optimizing the management strategy for one particular seismic record will not yield the best results for another. In this article, we propose a framework for online management of active structural management systems with seismic uncertainty. For this purpose, the concept of reinforcement learning is used for online optimization of active crowd management software. The controller consists of a differential controller, an unplanned gain ratio, the gain of which is enhanced using an online reinforcement learning algorithm. In addition, the proposed controller includes a dynamic status forecaster to solve the delay problem. To evaluate the performance of the proposed controllers, thousands of ground motion data sets were processed and grouped according to their spectrum using fuzzy clustering techniques with spatial hazard estimation. Finally, the controller is implemented in a laboratory scale configuration and its operation is simulated on a vibration table using cluster location and some actual seismic data. The test results show that the proposed controller effectively withstands strong seismic interference with delay. The goals of this paper are towards access to adequate, safe and affordable housing and basic services, promotion of inclusive and sustainable urbanization and participation, implementation of sustainable and disaster-resilient buildings, sustainable human settlement planning and manage. Simulation results is believed to achieved in the near future by the ongoing development of AI and control theory.

Predictive Clustering-based Collaborative Filtering Technique for Performance-Stability of Recommendation System (추천 시스템의 성능 안정성을 위한 예측적 군집화 기반 협업 필터링 기법)

  • Lee, O-Joun;You, Eun-Soon
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.1
    • /
    • pp.119-142
    • /
    • 2015
  • With the explosive growth in the volume of information, Internet users are experiencing considerable difficulties in obtaining necessary information online. Against this backdrop, ever-greater importance is being placed on a recommender system that provides information catered to user preferences and tastes in an attempt to address issues associated with information overload. To this end, a number of techniques have been proposed, including content-based filtering (CBF), demographic filtering (DF) and collaborative filtering (CF). Among them, CBF and DF require external information and thus cannot be applied to a variety of domains. CF, on the other hand, is widely used since it is relatively free from the domain constraint. The CF technique is broadly classified into memory-based CF, model-based CF and hybrid CF. Model-based CF addresses the drawbacks of CF by considering the Bayesian model, clustering model or dependency network model. This filtering technique not only improves the sparsity and scalability issues but also boosts predictive performance. However, it involves expensive model-building and results in a tradeoff between performance and scalability. Such tradeoff is attributed to reduced coverage, which is a type of sparsity issues. In addition, expensive model-building may lead to performance instability since changes in the domain environment cannot be immediately incorporated into the model due to high costs involved. Cumulative changes in the domain environment that have failed to be reflected eventually undermine system performance. This study incorporates the Markov model of transition probabilities and the concept of fuzzy clustering with CBCF to propose predictive clustering-based CF (PCCF) that solves the issues of reduced coverage and of unstable performance. The method improves performance instability by tracking the changes in user preferences and bridging the gap between the static model and dynamic users. Furthermore, the issue of reduced coverage also improves by expanding the coverage based on transition probabilities and clustering probabilities. The proposed method consists of four processes. First, user preferences are normalized in preference clustering. Second, changes in user preferences are detected from review score entries during preference transition detection. Third, user propensities are normalized using patterns of changes (propensities) in user preferences in propensity clustering. Lastly, the preference prediction model is developed to predict user preferences for items during preference prediction. The proposed method has been validated by testing the robustness of performance instability and scalability-performance tradeoff. The initial test compared and analyzed the performance of individual recommender systems each enabled by IBCF, CBCF, ICFEC and PCCF under an environment where data sparsity had been minimized. The following test adjusted the optimal number of clusters in CBCF, ICFEC and PCCF for a comparative analysis of subsequent changes in the system performance. The test results revealed that the suggested method produced insignificant improvement in performance in comparison with the existing techniques. In addition, it failed to achieve significant improvement in the standard deviation that indicates the degree of data fluctuation. Notwithstanding, it resulted in marked improvement over the existing techniques in terms of range that indicates the level of performance fluctuation. The level of performance fluctuation before and after the model generation improved by 51.31% in the initial test. Then in the following test, there has been 36.05% improvement in the level of performance fluctuation driven by the changes in the number of clusters. This signifies that the proposed method, despite the slight performance improvement, clearly offers better performance stability compared to the existing techniques. Further research on this study will be directed toward enhancing the recommendation performance that failed to demonstrate significant improvement over the existing techniques. The future research will consider the introduction of a high-dimensional parameter-free clustering algorithm or deep learning-based model in order to improve performance in recommendations.

Music summarization using visual information of music and clustering method

  • Kim, Sang-Ho;Ji, Mi-Kyong;Kim, Hoi-Rin
    • 한국HCI학회:학술대회논문집
    • /
    • 2006.02a
    • /
    • pp.400-405
    • /
    • 2006
  • In this paper, we present effective methods for music summarization which summarize music automatically. It could be used for sample music of on-line digital music provider or some music retrieval technology. When summarizing music, we use different two methods according to music length. First method is for finding sabi or chorus part of music which can be regarded as the most important part of music and the second method is for extracting several parts which are in different structure or have different mood in the music. Our proposed music summarization system is better than conventional system when structure of target music is explicit. The proposed method could generate just one important segment of music or several segments which have different mood in the music. Thus, this scheme will be effective for summarizing music in several applications such as online music streaming service and sample music for Tcommerce.

  • PDF

Inappropriate Survey Design Analysis of the Korean National Health and Nutrition Examination Survey May Produce Biased Results

  • Kim, Yangho;Park, Sunmin;Kim, Nam-Soo;Lee, Byung-Kook
    • Journal of Preventive Medicine and Public Health
    • /
    • v.46 no.2
    • /
    • pp.96-104
    • /
    • 2013
  • Objectives: The inherent nature of the Korean National Health and Nutrition Examination Survey (KNHANES) design requires special analysis by incorporating sample weights, stratification, and clustering not used in ordinary statistical procedures. Methods: This study investigated the proportion of research papers that have used an appropriate statistical methodology out of the research papers analyzing the KNHANES cited in the PubMed online system from 2007 to 2012. We also compared differences in mean and regression estimates between the ordinary statistical data analyses without sampling weight and design-based data analyses using the KNHANES 2008 to 2010. Results: Of the 247 research articles cited in PubMed, only 19.8% of all articles used survey design analysis, compared with 80.2% of articles that used ordinary statistical analysis, treating KNHANES data as if it were collected using a simple random sampling method. Means and standard errors differed between the ordinary statistical data analyses and design-based analyses, and the standard errors in the design-based analyses tended to be larger than those in the ordinary statistical data analyses. Conclusions: Ignoring complex survey design can result in biased estimates and overstated significance levels. Sample weights, stratification, and clustering of the design must be incorporated into analyses to ensure the development of appropriate estimates and standard errors of these estimates.

Analysis and Visualization for Comment Messages of Internet Posts (인터넷 게시물의 댓글 분석 및 시각화)

  • Lee, Yun-Jung;Ji, Jeong-Hoon;Woo, Gyun;Cho, Hwan-Gue
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.7
    • /
    • pp.45-56
    • /
    • 2009
  • There are many internet users who collect the public opinions and express their opinions for internet news or blog articles through the replying comment on online community. But, it is hard to search and explore useful messages on web blogs since most of web blog systems show articles and their comments to the form of sequential list. Also, spam and malicious comments have become social problems as the internet users increase. In this paper, we propose a clustering and visualizing system for responding comments on large-scale weblogs, namely 'Daum AGORA,' using similarity analysis. Our system shows the comment clustering result as a simple screen view. Our system also detects spam comments using Needleman-Wunsch algorithm that is a well-known algorithm in bioinformatics.

A Study on Recommendation System Using Data Mining Techniques for Large-sized Music Contents (대용량 음악콘텐츠 환경에서의 데이터마이닝 기법을 활용한 추천시스템에 관한 연구)

  • Kim, Yong;Moon, Sung-Been
    • Journal of the Korean Society for information Management
    • /
    • v.24 no.2
    • /
    • pp.89-104
    • /
    • 2007
  • This research attempts to give a personalized recommendation framework in large-sized music contents environment. Despite of existing studios and commercial contents for recommendation systems, large online shopping malls are still looking for a recommendation system that can serve personalized recommendation and handle large data in real-time. This research utilizes data mining technologies and new pattern matching algorithm. A clustering technique is used to get dynamic user segmentations using user preference to contents categories. Then a sequential pattern mining technique is used to extract contents access patterns in the user segmentations. And the recommendation is given by our recommendation algorithm using user contents preference history and contents access patterns of the segment. In the framework, preprocessing and data transformation and transition are implemented on DBMS. The proposed system is implemented to show that the framework is feasible. In the experiment using real-world large data, personalized recommendation is given in almost real-time and shows acceptable correctness.

A Z-Index based MOLAP Cube Storage Scheme (Z-인덱스 기반 MOLAP 큐브 저장 구조)

  • Kim, Myung;Lim, Yoon-Sun
    • Journal of KIISE:Databases
    • /
    • v.29 no.4
    • /
    • pp.262-273
    • /
    • 2002
  • MOLAP is a technology that accelerates multidimensional data analysis by storing data in a multidimensional array and accessing them using their position information. Depending on a mapping scheme of a multidimensional array onto disk, the sliced of MOLAP operations such as slice and dice varies significantly. [1] proposed a MOLAP cube storage scheme that divides a cube into small chunks with equal side length, compresses sparse chunks, and stores the chunks in row-major order of their chunk indexes. This type of cube storage scheme gives a fair chance to all dimensions of the input data. Here, we developed a variant of their cube storage scheme by placing chunks in a different order. Our scheme accelerates slice and dice operations by aligning chunks to physical disk block boundaries and clustering neighboring chunks. Z-indexing is used for chunk clustering. The efficiency of the proposed scheme is evaluated through experiments. We showed that the proposed scheme is efficient for 3~5 dimensional cubes that are frequently used to analyze business data.

Rethinking of Self-Organizing Maps for Market Segmentation in Customer Relationship Management (고객관계관리의 시장 세분화를 위한 Self-Organizing Maps 재고찰)

  • Bang, Joung-Hae;Hamel, Lutz;Ioerger, Brian
    • Journal of Intelligence and Information Systems
    • /
    • v.13 no.4
    • /
    • pp.17-34
    • /
    • 2007
  • Organizations have realized the importance of CRM. To obtain the maximum possible lifetime value from a customer base, it is critical that customer data is analyzed to understand patterns of customer response. As customer databases assume gigantic proportions due to Internet and e-commerce activity, data-mining-based market segmentation becomes crucial for understanding customers. Here we raise a question and some issues of using single SOM approach for clustering while proposing multiple self-organizing maps approach. This methodology exploits additional themes on the attributes that characterize customers in a typical CRM system. Since this additional theme is usually ignored by traditional market segmentation techniques we here suggest careful application of SOM for market segmentation.

  • PDF

A Research on the Teaser Video Production Method by Keyframe Extraction Based on YCbCr Color Model (YCbCr 컬러모델 기반의 키프레임 추출을 통한 티저 영상 제작 방법에 대한 연구)

  • Lee, Seo-young;Park, Hyo-Gyeong;Young, Sung-Jung;You, Yeon-Hwi;Moon, Il-Young
    • Journal of Practical Engineering Education
    • /
    • v.14 no.2
    • /
    • pp.439-445
    • /
    • 2022
  • Due to the development of online media platforms and the COVID-19 incident, the mass production and consumption of digital video content are rapidly increasing. In order to select digital video content, users grasp it in a short time through thumbnails and teaser videos, and select and watch digital video content that suits them. It is very inconvenient to check all digital video contents produced around the world one by one and manually edit teaser videos for users to choose from. In this paper, keyframes are extracted based on YCbCr color models to automatically generate teaser videos, and keyframes extracted through clustering are optimized. Finally, we present a method of producing a teaser video to help users check digital video content by connecting the finally extracted keyframes.

Automatic Product Review Helpfulness Estimation based on Review Information Types (상품평의 정보 분류에 기반한 자동 상품평 유용성 평가)

  • Kim, Munhyong;Shin, Hyopil
    • Journal of KIISE
    • /
    • v.43 no.9
    • /
    • pp.983-997
    • /
    • 2016
  • Many available online product reviews for any given product makes it difficult for a consumer to locate the helpful reviews. The purpose of this study was to investigate automatic helpfulness evaluation of online product reviews according to review information types based on the target of information. The underlying assumption was that consumers find reviews containing specific information related to the product itself or the reliability of reviewers more helpful than peripheral information, such as shipping or customer service. Therefore, each sentence was categorized by given information types, which reduced the semantic space of review sentences. Subsequently, we extracted specific information from sentences by using a topic-based representation of the sentences and a clustering algorithm. Review ranking experiments indicated more effective results than other comparable approaches.