• Title/Summary/Keyword: Online business

Search Result 2,187, Processing Time 0.035 seconds

Emoticon by Emotions: The Development of an Emoticon Recommendation System Based on Consumer Emotions (Emoticon by Emotions: 소비자 감성 기반 이모티콘 추천 시스템 개발)

  • Kim, Keon-Woo;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.1
    • /
    • pp.227-252
    • /
    • 2018
  • The evolution of instant communication has mirrored the development of the Internet and messenger applications are among the most representative manifestations of instant communication technologies. In messenger applications, senders use emoticons to supplement the emotions conveyed in the text of their messages. The fact that communication via messenger applications is not face-to-face makes it difficult for senders to communicate their emotions to message recipients. Emoticons have long been used as symbols that indicate the moods of speakers. However, at present, emoticon-use is evolving into a means of conveying the psychological states of consumers who want to express individual characteristics and personality quirks while communicating their emotions to others. The fact that companies like KakaoTalk, Line, Apple, etc. have begun conducting emoticon business and sales of related content are expected to gradually increase testifies to the significance of this phenomenon. Nevertheless, despite the development of emoticons themselves and the growth of the emoticon market, no suitable emoticon recommendation system has yet been developed. Even KakaoTalk, a messenger application that commands more than 90% of domestic market share in South Korea, just grouped in to popularity, most recent, or brief category. This means consumers face the inconvenience of constantly scrolling around to locate the emoticons they want. The creation of an emoticon recommendation system would improve consumer convenience and satisfaction and increase the sales revenue of companies the sell emoticons. To recommend appropriate emoticons, it is necessary to quantify the emotions that the consumer sees and emotions. Such quantification will enable us to analyze the characteristics and emotions felt by consumers who used similar emoticons, which, in turn, will facilitate our emoticon recommendations for consumers. One way to quantify emoticons use is metadata-ization. Metadata-ization is a means of structuring or organizing unstructured and semi-structured data to extract meaning. By structuring unstructured emoticon data through metadata-ization, we can easily classify emoticons based on the emotions consumers want to express. To determine emoticons' precise emotions, we had to consider sub-detail expressions-not only the seven common emotional adjectives but also the metaphorical expressions that appear only in South Korean proved by previous studies related to emotion focusing on the emoticon's characteristics. We therefore collected the sub-detail expressions of emotion based on the "Shape", "Color" and "Adumbration". Moreover, to design a highly accurate recommendation system, we considered both emotion-technical indexes and emoticon-emotional indexes. We then identified 14 features of emoticon-technical indexes and selected 36 emotional adjectives. The 36 emotional adjectives consisted of contrasting adjectives, which we reduced to 18, and we measured the 18 emotional adjectives using 40 emoticon sets randomly selected from the top-ranked emoticons in the KakaoTalk shop. We surveyed 277 consumers in their mid-twenties who had experience purchasing emoticons; we recruited them online and asked them to evaluate five different emoticon sets. After data acquisition, we conducted a factor analysis of emoticon-emotional factors. We extracted four factors that we named "Comic", Softness", "Modernity" and "Transparency". We analyzed both the relationship between indexes and consumer attitude and the relationship between emoticon-technical indexes and emoticon-emotional factors. Through this process, we confirmed that the emoticon-technical indexes did not directly affect consumer attitudes but had a mediating effect on consumer attitudes through emoticon-emotional factors. The results of the analysis revealed the mechanism consumers use to evaluate emoticons; the results also showed that consumers' emoticon-technical indexes affected emoticon-emotional factors and that the emoticon-emotional factors affected consumer satisfaction. We therefore designed the emoticon recommendation system using only four emoticon-emotional factors; we created a recommendation method to calculate the Euclidean distance from each factors' emotion. In an attempt to increase the accuracy of the emoticon recommendation system, we compared the emotional patterns of selected emoticons with the recommended emoticons. The emotional patterns corresponded in principle. We verified the emoticon recommendation system by testing prediction accuracy; the predictions were 81.02% accurate in the first result, 76.64% accurate in the second, and 81.63% accurate in the third. This study developed a methodology that can be used in various fields academically and practically. We expect that the novel emoticon recommendation system we designed will increase emoticon sales for companies who conduct business in this domain and make consumer experiences more convenient. In addition, this study served as an important first step in the development of an intelligent emoticon recommendation system. The emotional factors proposed in this study could be collected in an emotional library that could serve as an emotion index for evaluation when new emoticons are released. Moreover, by combining the accumulated emotional library with company sales data, sales information, and consumer data, companies could develop hybrid recommendation systems that would bolster convenience for consumers and serve as intellectual assets that companies could strategically deploy.

A Study on Web-based Technology Valuation System (웹기반 지능형 기술가치평가 시스템에 관한 연구)

  • Sung, Tae-Eung;Jun, Seung-Pyo;Kim, Sang-Gook;Park, Hyun-Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.1
    • /
    • pp.23-46
    • /
    • 2017
  • Although there have been cases of evaluating the value of specific companies or projects which have centralized on developed countries in North America and Europe from the early 2000s, the system and methodology for estimating the economic value of individual technologies or patents has been activated on and on. Of course, there exist several online systems that qualitatively evaluate the technology's grade or the patent rating of the technology to be evaluated, as in 'KTRS' of the KIBO and 'SMART 3.1' of the Korea Invention Promotion Association. However, a web-based technology valuation system, referred to as 'STAR-Value system' that calculates the quantitative values of the subject technology for various purposes such as business feasibility analysis, investment attraction, tax/litigation, etc., has been officially opened and recently spreading. In this study, we introduce the type of methodology and evaluation model, reference information supporting these theories, and how database associated are utilized, focusing various modules and frameworks embedded in STAR-Value system. In particular, there are six valuation methods, including the discounted cash flow method (DCF), which is a representative one based on the income approach that anticipates future economic income to be valued at present, and the relief-from-royalty method, which calculates the present value of royalties' where we consider the contribution of the subject technology towards the business value created as the royalty rate. We look at how models and related support information (technology life, corporate (business) financial information, discount rate, industrial technology factors, etc.) can be used and linked in a intelligent manner. Based on the classification of information such as International Patent Classification (IPC) or Korea Standard Industry Classification (KSIC) for technology to be evaluated, the STAR-Value system automatically returns meta data such as technology cycle time (TCT), sales growth rate and profitability data of similar company or industry sector, weighted average cost of capital (WACC), indices of industrial technology factors, etc., and apply adjustment factors to them, so that the result of technology value calculation has high reliability and objectivity. Furthermore, if the information on the potential market size of the target technology and the market share of the commercialization subject refers to data-driven information, or if the estimated value range of similar technologies by industry sector is provided from the evaluation cases which are already completed and accumulated in database, the STAR-Value is anticipated that it will enable to present highly accurate value range in real time by intelligently linking various support modules. Including the explanation of the various valuation models and relevant primary variables as presented in this paper, the STAR-Value system intends to utilize more systematically and in a data-driven way by supporting the optimal model selection guideline module, intelligent technology value range reasoning module, and similar company selection based market share prediction module, etc. In addition, the research on the development and intelligence of the web-based STAR-Value system is significant in that it widely spread the web-based system that can be used in the validation and application to practices of the theoretical feasibility of the technology valuation field, and it is expected that it could be utilized in various fields of technology commercialization.

A Comparative Analysis of Social Commerce and Open Market Using User Reviews in Korean Mobile Commerce (사용자 리뷰를 통한 소셜커머스와 오픈마켓의 이용경험 비교분석)

  • Chae, Seung Hoon;Lim, Jay Ick;Kang, Juyoung
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.4
    • /
    • pp.53-77
    • /
    • 2015
  • Mobile commerce provides a convenient shopping experience in which users can buy products without the constraints of time and space. Mobile commerce has already set off a mega trend in Korea. The market size is estimated at approximately 15 trillion won (KRW) for 2015, thus far. In the Korean market, social commerce and open market are key components. Social commerce has an overwhelming open market in terms of the number of users in the Korean mobile commerce market. From the point of view of the industry, quick market entry, and content curation are considered to be the major success factors, reflecting the rapid growth of social commerce in the market. However, academics' empirical research and analysis to prove the success rate of social commerce is still insufficient. Henceforward, it is to be expected that social commerce and the open market in the Korean mobile commerce will compete intensively. So it is important to conduct an empirical analysis to prove the differences in user experience between social commerce and open market. This paper is an exploratory study that shows a comparative analysis of social commerce and the open market regarding user experience, which is based on the mobile users' reviews. Firstly, this study includes a collection of approximately 10,000 user reviews of social commerce and open market listed Google play. A collection of mobile user reviews were classified into topics, such as perceived usefulness and perceived ease of use through LDA topic modeling. Then, a sentimental analysis and co-occurrence analysis on the topics of perceived usefulness and perceived ease of use was conducted. The study's results demonstrated that social commerce users have a more positive experience in terms of service usefulness and convenience versus open market in the mobile commerce market. Social commerce has provided positive user experiences to mobile users in terms of service areas, like 'delivery,' 'coupon,' and 'discount,' while open market has been faced with user complaints in terms of technical problems and inconveniences like 'login error,' 'view details,' and 'stoppage.' This result has shown that social commerce has a good performance in terms of user service experience, since the aggressive marketing campaign conducted and there have been investments in building logistics infrastructure. However, the open market still has mobile optimization problems, since the open market in mobile commerce still has not resolved user complaints and inconveniences from technical problems. This study presents an exploratory research method used to analyze user experience by utilizing an empirical approach to user reviews. In contrast to previous studies, which conducted surveys to analyze user experience, this study was conducted by using empirical analysis that incorporates user reviews for reflecting users' vivid and actual experiences. Specifically, by using an LDA topic model and TAM this study presents its methodology, which shows an analysis of user reviews that are effective due to the method of dividing user reviews into service areas and technical areas from a new perspective. The methodology of this study has not only proven the differences in user experience between social commerce and open market, but also has provided a deep understanding of user experience in Korean mobile commerce. In addition, the results of this study have important implications on social commerce and open market by proving that user insights can be utilized in establishing competitive and groundbreaking strategies in the market. The limitations and research direction for follow-up studies are as follows. In a follow-up study, it will be required to design a more elaborate technique of the text analysis. This study could not clearly refine the user reviews, even though the ones online have inherent typos and mistakes. This study has proven that the user reviews are an invaluable source to analyze user experience. The methodology of this study can be expected to further expand comparative research of services using user reviews. Even at this moment, users around the world are posting their reviews about service experiences after using the mobile game, commerce, and messenger applications.

The Impact of Collective Guilt on the Preference for Japanese Products (집체범죄감대경향일본산품적영향(集体犯罪感对倾向日本产品的影响))

  • Maher, Amro A.;Singhapakdi, Anusorn;Park, Hyun-Soo;Auh, Sei-Gyoung
    • Journal of Global Scholars of Marketing Science
    • /
    • v.20 no.2
    • /
    • pp.135-148
    • /
    • 2010
  • Arab boycotts of Danish products, Australian boycotts of French products and Chinese consumer aversion toward Japanese products are all examples of how adverse actions at the country level might impact consumers' behavior. The animosity literature has examined how consumers react to the adverse actions of other countries, and how such animosity impacts consumers' attitudes and preferences for products from the transgressing country. For example, Chinese consumers are less likely to buy Japanese products because of Japanese atrocities during World War II and the unjust economic dealings of the Japanese (Klein, Ettenson and Morris 1998). The marketing literature, however, has not examined how consumers react to adverse actions committed by their own country against other countries, and whether such actions affect their attitudes towards purchasing products that originated from the adversely affected country. The social psychology literature argues that consumers will experience a feeling called collective guilt, in response to such adverse actions. Collective guilt stems from the distress experienced by group members when they accept that their group is responsible for actions that have harmed another group (Branscombe, Slugoski, and Kappenn 2004). Examples include Americans feeling guilty about the atrocities committed by the U.S. military at Abu Ghraib prison (Iyer, Schamder and Lickel 2007), and the Dutch about their occupation of Indonesia in the past (Doosje et al. 1998). The primary aim of this study is to examine consumers' perceptions of adverse actions by members of one's own country against another country and whether such perceptions affected their attitudes towards products originating from the country transgressed against. More specifically, one objective of this study is to examine the perceptual antecedents of collective guilt, an emotional reaction to adverse actions performed by members of one's country against another country. Another objective is to examine the impact of collective guilt on consumers' perceptions of, and preference for, products originating from the country transgressed against by the consumers' own country. If collective guilt emerges as a significant predictor, companies originating from countries that have been transgressed against might be able to capitalize on such unfortunate events. This research utilizes the animosity model introduced by Klein, Ettenson and Morris (1998) and later expanded on by Klein (2002). Klein finds that U.S. consumers harbor animosity toward the Japanese. This animosity is experienced in response to events that occurred during World War II (i.e., the bombing of Pearl Harbor) and more recently the perceived economic threat from Japan. Thus this study argues that the events of Word War II (i.e., bombing of Hiroshima and Nagasaki) might lead U.S. consumers to experience collective guilt. A series of three hypotheses were introduced. The first hypothesis deals with the antecedents of collective guilt. Previous research argues that collective guilt is experienced when consumers perceive that the harm following a transgression is illegitimate and that the country from which the transgressors originate should be responsible for the adverse actions. (Wohl, Branscombe, and Klar 2006). Therefore the following hypothesis was offered: H1a. Higher levels of perceived illegitimacy for the harm committed will result in higher levels of collective guilt. H1b. Higher levels of responsibility will be positively associated with higher levels of collective guilt. The second and third hypotheses deal with the impact of collective guilt on the preferences for Japanese products. Klein (2002) found that higher levels of animosity toward Japan resulted in a lower preference for a Japanese product relative to a South Korean product but not a lower preference for a Japanese product relative to a U.S. product. These results therefore indicate that the experience of collective guilt will lead to a higher preference for a Japanese product if consumers are contemplating a choice that inv olves a decision to buy Japanese versus South Korean product but not if the choice involves a decision to buy a Japanese versus a U.S. product. H2. Collective guilt will be positively related to the preference for a Japanese product over a South Korean product, but will not be related to the preference for a Japanese product over a U.S. product. H3. Collective guilt will be positively related to the preference for a Japanese product over a South Korean product, holding constant product judgments and animosity. An experiment was conducted to test the hypotheses. The illegitimacy of the harm and responsibility were manipulated by exposing respondents to a description of adverse events occurring during World War II. Data were collected using an online consumer panel in the United States. Subjects were randomly assigned to either the low levels of responsibility and illegitimacy condition (n=259) or the high levels of responsibility and illigitemacy (n=268) condition. Latent Variable Structural Equation Modeling (LVSEM) was used to test the hypothesized relationships. The first hypothesis is supported as both the illegitimacy of the harm and responsibility assigned to the Americans for the harm committed against the Japanese during WWII have a positive impact on collective guilt. The second hypothesis is also supported as collective guilt is positively related to preference for a Japanese product over a South Korean product but is not related to preference for a Japanese product over a U.S. product. Finally there is support for the third hypothesis, since collective guilt is positively related to the preference for a Japanese product over a South Korean product while controlling for the effect of product judgments about Japanese products and animosity. The results of these studies lead to several conclusions. First, the illegitimacy of harm and responsibility can be manipulated and that they are antecedents of collective guilt. Second, collective guilt has an impact on a consumers' decision when they face a choice set that includes a product from the country that was the target of the adverse action and a product from another foreign country. This impact however disappears from a consumers' decision when they face a choice set that includes a product from the country that was the target of the adverse action and a domestic product. This result suggests that collective guilt might be a viable factor for company originating from the country transgressed against if its competitors are foreign but not if they are local.

The Mediating Effect of Experiential Value on Customers' Perceived Value of Digital Content: China's Anti-virus Program Market (경험개치대소비자대전자내용적인지개치적중개영향(经验价值对消费者对电子内容的认知价值的中介影响): 중국살독연건시장(中国杀毒软件市场))

  • Jia, Weiwei;Kim, Sae-Bum
    • Journal of Global Scholars of Marketing Science
    • /
    • v.20 no.2
    • /
    • pp.219-230
    • /
    • 2010
  • Digital content makes big changes to our daily lives while bringing opportunities and challenges for companies. Creative firms integrate pictures, texts, videos, audios, and data by digitalization to develop new products or services and create digital experiences to promote their brands. Most articles on digital content contribute to the basic concept or development of marketing it in literature. Actually, compared with traditional value chains for common products or services, the digital content industry seems to have more potential value. Because quite a bit of digital content is free to the consumer, price is not necessarily perceived as an indicator of the quality or value of information (Rowley 2008). It becomes evident that a current theme in digital content is the issue of "value," and research on customers' perceived value of digital content is a necessity. This article argues that experiential value has an advantage in customers' evaluations of digital content. Two different but related contributions to the understanding of "value" of digital content are made here. First, based on the comparison of digital content with products and services, the article proposes two key characteristics that make experiential strategy available for digital content: intangibility and near-zero reproduction cost. On top of that, based on the discussion of the gap between company's idealized value and customer's perceived value, this article emphasizes that digital content prices and pricing of digital content is different from products and services. As a result of intangibility, prices may not reflect customer value. Moreover, the cost of digital content in the development stage may be very high while reproduction costs shrink dramatically. Moreover, because of the value gap mentioned before, the pricing polices vary for different digital contents. For example, flat price policy is generally used for movies and music (Magiera 2001; Netherby 2002), while for continuous demand, digital content such as online games and anti-virus programs involves a more complicated matter of utility and competitive price levels. Digital content companies have to explore various kinds of strategies to overcome this gap. Rethinking marketing solutions such as advertisements, images, and word-of-mouth and their effect on customers' perceived value becomes essential. China's digital content industry is becoming more and more globalized and drawing special attention from different countries and regions that have respective competitive advantages. The 2008-2009 Annual Report on the Development of China's Digital Content Industry (CCIDConsulting 2009) indicates that, with the driven power of domestic demand and governmental policy support, the country's digital content industry maintained a fast growth of some 30 percent in 2008, obviously indicating the initial stage of industry expansion. In China, anti-virus programs and other software programs which need to be updated use a quarter-based pricing policy. Customers can download a trial version for free and use it for six months or a year. If they want to use it longer, continuous payment is needed. They examine the excellence of the digital content during this trial period and decide whether to pay for continued usage. For China’s music and movie industries, as a result of initial development, experiential strategy has not been much applied, even though firms in other countries find the trial experience and explore important strategies(such as customers listening to music for several seconds for free before downloading it). For the above reasons, anti-virus program may be a representative for digital content industry in China and an exploratory study of the advantage of experiential value in customer's perceived value of digital content is done in the anti-virus market of China. In order to enhance the reliability of the survey data, this study focused on people who were experienced users of anti-virus programs. The empirical results revealed that experiential value has a positive effect on customers' perceived value of digital content. In other words, because digital content is intangible and the reproduction costs are nearly zero, customers' evaluations are based heavily on their experience. Moreover, image and word-of-mouth do not have a positive effect on perceived value, only on experiential value. That is to say, a digital content value chain is different from that of a general product or service. Experiential value has a notable advantage and mediates the effect of image and word-of-mouth on perceived value. The results of this study help provide an understanding of why free digital content downloads exist in developing countries. Customers can perceive the value of digital content only by using and experiencing it. This is also why such governments support the development of digital content. Other developing countries whose digital content business is also in the beginning stage can make use of the suggestions here. Moreover, based on the advantage of experiential strategy, companies should make more of an effort to invest in customers' experience. As a result of the characteristics and value gap of digital content, customers perceive more value in the intangible digital content only by experiencing what they really want. Moreover, because of the near-zero reproduction costs, companies can perhaps use experiential strategy to enhance customer understanding of digital content.

A Study on the Revitalization of Tourism Industry through Big Data Analysis (한국관광 실태조사 빅 데이터 분석을 통한 관광산업 활성화 방안 연구)

  • Lee, Jungmi;Liu, Meina;Lim, Gyoo Gun
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.2
    • /
    • pp.149-169
    • /
    • 2018
  • Korea is currently accumulating a large amount of data in public institutions based on the public data open policy and the "Government 3.0". Especially, a lot of data is accumulated in the tourism field. However, the academic discussions utilizing the tourism data are still limited. Moreover, the openness of the data of restaurants, hotels, and online tourism information, and how to use SNS Big Data in tourism are still limited. Therefore, utilization through tourism big data analysis is still low. In this paper, we tried to analyze influencing factors on foreign tourists' satisfaction in Korea through numerical data using data mining technique and R programming technique. In this study, we tried to find ways to revitalize the tourism industry by analyzing about 36,000 big data of the "Survey on the actual situation of foreign tourists from 2013 to 2015" surveyed by the Korea Culture & Tourism Research Institute. To do this, we analyzed the factors that have high influence on the 'Satisfaction', 'Revisit intention', and 'Recommendation' variables of foreign tourists. Furthermore, we analyzed the practical influences of the variables that are mentioned above. As a procedure of this study, we first integrated survey data of foreign tourists conducted by Korea Culture & Tourism Research Institute, which is stored in the tourist information system from 2013 to 2015, and eliminate unnecessary variables that are inconsistent with the research purpose among the integrated data. Some variables were modified to improve the accuracy of the analysis. And we analyzed the factors affecting the dependent variables by using data-mining methods: decision tree(C5.0, CART, CHAID, QUEST), artificial neural network, and logistic regression analysis of SPSS IBM Modeler 16.0. The seven variables that have the greatest effect on each dependent variable were derived. As a result of data analysis, it was found that seven major variables influencing 'overall satisfaction' were sightseeing spot attraction, food satisfaction, accommodation satisfaction, traffic satisfaction, guide service satisfaction, number of visiting places, and country. Variables that had a great influence appeared food satisfaction and sightseeing spot attraction. The seven variables that had the greatest influence on 'revisit intention' were the country, travel motivation, activity, food satisfaction, best activity, guide service satisfaction and sightseeing spot attraction. The most influential variables were food satisfaction and travel motivation for Korean style. Lastly, the seven variables that have the greatest influence on the 'recommendation intention' were the country, sightseeing spot attraction, number of visiting places, food satisfaction, activity, tour guide service satisfaction and cost. And then the variables that had the greatest influence were the country, sightseeing spot attraction, and food satisfaction. In addition, in order to grasp the influence of each independent variables more deeply, we used R programming to identify the influence of independent variables. As a result, it was found that the food satisfaction and sightseeing spot attraction were higher than other variables in overall satisfaction and had a greater effect than other influential variables. Revisit intention had a higher ${\beta}$ value in the travel motive as the purpose of Korean Wave than other variables. It will be necessary to have a policy that will lead to a substantial revisit of tourists by enhancing tourist attractions for the purpose of Korean Wave. Lastly, the recommendation had the same result of satisfaction as the sightseeing spot attraction and food satisfaction have higher ${\beta}$ value than other variables. From this analysis, we found that 'food satisfaction' and 'sightseeing spot attraction' variables were the common factors to influence three dependent variables that are mentioned above('Overall satisfaction', 'Revisit intention' and 'Recommendation'), and that those factors affected the satisfaction of travel in Korea significantly. The purpose of this study is to examine how to activate foreign tourists in Korea through big data analysis. It is expected to be used as basic data for analyzing tourism data and establishing effective tourism policy. It is expected to be used as a material to establish an activation plan that can contribute to tourism development in Korea in the future.

Different Look, Different Feel: Social Robot Design Evaluation Model Based on ABOT Attributes and Consumer Emotions (각인각색, 각봇각색: ABOT 속성과 소비자 감성 기반 소셜로봇 디자인평가 모형 개발)

  • Ha, Sangjip;Lee, Junsik;Yoo, In-Jin;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.2
    • /
    • pp.55-78
    • /
    • 2021
  • Tosolve complex and diverse social problems and ensure the quality of life of individuals, social robots that can interact with humans are attracting attention. In the past, robots were recognized as beings that provide labor force as they put into industrial sites on behalf of humans. However, the concept of today's robot has been extended to social robots that coexist with humans and enable social interaction with the advent of Smart technology, which is considered an important driver in most industries. Specifically, there are service robots that respond to customers, the robots that have the purpose of edutainment, and the emotionalrobots that can interact with humans intimately. However, popularization of robots is not felt despite the current information environment in the modern ICT service environment and the 4th industrial revolution. Considering social interaction with users which is an important function of social robots, not only the technology of the robots but also other factors should be considered. The design elements of the robot are more important than other factors tomake consumers purchase essentially a social robot. In fact, existing studies on social robots are at the level of proposing "robot development methodology" or testing the effects provided by social robots to users in pieces. On the other hand, consumer emotions felt from the robot's appearance has an important influence in the process of forming user's perception, reasoning, evaluation and expectation. Furthermore, it can affect attitude toward robots and good feeling and performance reasoning, etc. Therefore, this study aims to verify the effect of appearance of social robot and consumer emotions on consumer's attitude toward social robot. At this time, a social robot design evaluation model is constructed by combining heterogeneous data from different sources. Specifically, the three quantitative indicator data for the appearance of social robots from the ABOT Database is included in the model. The consumer emotions of social robot design has been collected through (1) the existing design evaluation literature and (2) online buzzsuch as product reviews and blogs, (3) qualitative interviews for social robot design. Later, we collected the score of consumer emotions and attitudes toward various social robots through a large-scale consumer survey. First, we have derived the six major dimensions of consumer emotions for 23 pieces of detailed emotions through dimension reduction methodology. Then, statistical analysis was performed to verify the effect of derived consumer emotionson attitude toward social robots. Finally, the moderated regression analysis was performed to verify the effect of quantitatively collected indicators of social robot appearance on the relationship between consumer emotions and attitudes toward social robots. Interestingly, several significant moderation effects were identified, these effects are visualized with two-way interaction effect to interpret them from multidisciplinary perspectives. This study has theoretical contributions from the perspective of empirically verifying all stages from technical properties to consumer's emotion and attitudes toward social robots by linking the data from heterogeneous sources. It has practical significance that the result helps to develop the design guidelines based on consumer emotions in the design stage of social robot development.

The Effects of Self-Determination on Entrepreneurial Intention in Office Workers: Focusing on the Dual Mediation of Innovativeness and Prception of the Startup Support System (직장인의 자기결정성이 창업의지에 미치는 영향: 혁신성과 창업지원정책인식의 이중매개를 중심으로)

  • Lim, Jae Sung
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.19 no.1
    • /
    • pp.75-91
    • /
    • 2024
  • Recently, global business environment is changing dramatically along with the acceleration of technological innovation amid the war, climatic change, and geopolitical instability. Accordingly, it is difficult to predict or plan for the future as the volatility, complexity, ambiguity, and uncertainty of the industrial ecosystem continue to increase. Therefore, organizations are undergoing inevitable restructuring in accordance with their survival strategy, for instance, removing marginal businesses or firing. Accordingly, office workers are seeking a startup as an alternative for their continuous economic activity amid rising anxiety factors that make them think they would lose their jobs unintentionally. Here, this study is aimed to verify through what paths office workers' self-determination influences the process of converting to a startup. For this study, an online survey was carried out, and 310 respondents' valid data were analyzed through SPSS and AMOS. To sum up the results, first, office workers' self-determination did not have significant effects on entrepreneurial intention. However, it was confirmed that self-determination had positive (+) effects on innovativeness and perception of the startup support system. This result shows that their psychology works to prepare step by step by accumulating innovative experiences and increasing perception of the startup support system from a long-term life path perspective rather than challenging startups right way. Second, innovativeness is found to have positive (+) effects on entrepreneurial intention. Also, perception of the startup support system had positive (+) effects on entrepreneurial intention. This implies that when considering startups, they are highly aware of the government's various startup support systems. Third, innovativeness is found to have positive (+) effects on perception of the startup support system. It is judged that perception of the startup support system is valid for prospective founders to exhibit their innovativeness and realize new ideas. Fourth, it was confirmed that innovativeness and perception of the startup support system mediated correlation between self-determination and entrepreneurial intention, and perception of the startup support system mediated correlation between innovativeness and entrepreneurial intention, which shows that it is a crucial factor in entrepreneurial intention. Although previous studies related to startups deal with students mostly, this study targets office workers who form a great part in economic activities, which makes it academically valuable in terms of being differentiated from others and extending the scope of research. Also, when we consider the fact that the motivation for self-determination alone fails to stimulate entrepreneurial intention and the complete mediation of innovativeness and the startup support system, it has great implications in practical aspects such as the government's human and material support systems. In the selection and analysis of samples, this study exhibits a limitation that the problem of common method bias is not completely resolved. Also, additional definitive research is needed on whether entrepreneurial intention is formed and converted into startup behavior. Academically and practically, this study deals with the relationship between humans' psychological motives and startups which has not been handled sufficiently in previous studies. The conversion of office workers to startups is expected to have effects on individuals' economic stability and the state's job creation; therefore, it needs to be investigated continuously for its great value.

  • PDF

Stock Price Prediction by Utilizing Category Neutral Terms: Text Mining Approach (카테고리 중립 단어 활용을 통한 주가 예측 방안: 텍스트 마이닝 활용)

  • Lee, Minsik;Lee, Hong Joo
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.2
    • /
    • pp.123-138
    • /
    • 2017
  • Since the stock market is driven by the expectation of traders, studies have been conducted to predict stock price movements through analysis of various sources of text data. In order to predict stock price movements, research has been conducted not only on the relationship between text data and fluctuations in stock prices, but also on the trading stocks based on news articles and social media responses. Studies that predict the movements of stock prices have also applied classification algorithms with constructing term-document matrix in the same way as other text mining approaches. Because the document contains a lot of words, it is better to select words that contribute more for building a term-document matrix. Based on the frequency of words, words that show too little frequency or importance are removed. It also selects words according to their contribution by measuring the degree to which a word contributes to correctly classifying a document. The basic idea of constructing a term-document matrix was to collect all the documents to be analyzed and to select and use the words that have an influence on the classification. In this study, we analyze the documents for each individual item and select the words that are irrelevant for all categories as neutral words. We extract the words around the selected neutral word and use it to generate the term-document matrix. The neutral word itself starts with the idea that the stock movement is less related to the existence of the neutral words, and that the surrounding words of the neutral word are more likely to affect the stock price movements. And apply it to the algorithm that classifies the stock price fluctuations with the generated term-document matrix. In this study, we firstly removed stop words and selected neutral words for each stock. And we used a method to exclude words that are included in news articles for other stocks among the selected words. Through the online news portal, we collected four months of news articles on the top 10 market cap stocks. We split the news articles into 3 month news data as training data and apply the remaining one month news articles to the model to predict the stock price movements of the next day. We used SVM, Boosting and Random Forest for building models and predicting the movements of stock prices. The stock market opened for four months (2016/02/01 ~ 2016/05/31) for a total of 80 days, using the initial 60 days as a training set and the remaining 20 days as a test set. The proposed word - based algorithm in this study showed better classification performance than the word selection method based on sparsity. This study predicted stock price volatility by collecting and analyzing news articles of the top 10 stocks in market cap. We used the term - document matrix based classification model to estimate the stock price fluctuations and compared the performance of the existing sparse - based word extraction method and the suggested method of removing words from the term - document matrix. The suggested method differs from the word extraction method in that it uses not only the news articles for the corresponding stock but also other news items to determine the words to extract. In other words, it removed not only the words that appeared in all the increase and decrease but also the words that appeared common in the news for other stocks. When the prediction accuracy was compared, the suggested method showed higher accuracy. The limitation of this study is that the stock price prediction was set up to classify the rise and fall, and the experiment was conducted only for the top ten stocks. The 10 stocks used in the experiment do not represent the entire stock market. In addition, it is difficult to show the investment performance because stock price fluctuation and profit rate may be different. Therefore, it is necessary to study the research using more stocks and the yield prediction through trading simulation.

Information types and characteristics within the Wireless Emergency Alert in COVID-19: Focusing on Wireless Emergency Alerts in Seoul (코로나 19 하에서 재난문자 내의 정보유형 및 특성: 서울특별시 재난문자를 중심으로)

  • Yoon, Sungwook;Nam, Kihwan
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.1
    • /
    • pp.45-68
    • /
    • 2022
  • The central and local governments of the Republic of Korea provided information necessary for disaster response through wireless emergency alerts (WEAs) in order to overcome the pandemic situation in which COVID-19 rapidly spreads. Among all channels for delivering disaster information, wireless emergency alert is the most efficient, and since it adopts the CBS(Cell Broadcast Service) method that broadcasts directly to the mobile phone, it has the advantage of being able to easily access disaster information through the mobile phone without the effort of searching. In this study, the characteristics of wireless emergency alerts sent to Seoul during the past year and one month (January 2020 to January 2021) were derived through various text mining methodologies, and various types of information contained in wireless emergency alerts were analyzed. In addition, it was confirmed through the population mobility by age in the districts of Seoul that what kind of influence it had on the movement behavior of people. After going through the process of classifying key words and information included in each character, text analysis was performed so that individual sent characters can be used as an analysis unit by applying a document cluster analysis technique based on the included words. The number of WEAs sent to the Seoul has grown dramatically since the spread of Covid-19. In January 2020, only 10 WEAs were sent to the Seoul, but the number of the WEAs increased 5 times in March, and 7.7 times over the previous months. Since the basic, regional local government were authorized to send wireless emergency alerts independently, the sending behavior of related to wireless emergency alerts are different for each local government. Although most of the basic local governments increased the transmission of WEAs as the number of confirmed cases of Covid-19 increases, the trend of the increase in WEAs according to the increase in the number of confirmed cases of Covid-19 was different by region. By using structured econometric model, the effect of disaster information included in wireless emergency alerts on population mobility was measured by dividing it into baseline effect and accumulating effect. Six types of disaster information, including date, order, online URL, symptom, location, normative guidance, were identified in WEAs and analyzed through econometric modelling. It was confirmed that the types of information that significantly change population mobility by age are different. Population mobility of people in their 60s and 70s decreased when wireless emergency alerts included information related to date and order. As date and order information is appeared in WEAs when they intend to give information about Covid-19 confirmed cases, these results show that the population mobility of higher ages decreased as they reacted to the messages reporting of confirmed cases of Covid-19. Online information (URL) decreased the population mobility of in their 20s, and information related to symptoms reduced the population mobility of people in their 30s. On the other hand, it was confirmed that normative words that including the meaning of encouraging compliance with quarantine policies did not cause significant changes in the population mobility of all ages. This means that only meaningful information which is useful for disaster response should be included in the wireless emergency alerts. Repeated sending of wireless emergency alerts reduces the magnitude of the impact of disaster information on population mobility. It proves indirectly that under the prolonged pandemic, people started to feel tired of getting repetitive WEAs with similar content and started to react less. In order to effectively use WEAs for quarantine and overcoming disaster situations, it is necessary to reduce the fatigue of the people who receive WEA by sending them only in necessary situations, and to raise awareness of WEAs.