• Title/Summary/Keyword: Online Purchase Decision

Search Result 153, Processing Time 0.023 seconds

The Effects of Customer Product Review on Social Presence in Personalized Recommender Systems (개인화 추천시스템에서 고객 제품 리뷰가 사회적 실재감에 미치는 영향)

  • Choi, Jae-Won;Lee, Hong-Joo
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.3
    • /
    • pp.115-130
    • /
    • 2011
  • Many online stores bring features that can build trust in their customers. More so, the number of products or content services on online stores has been increasing rapidly. Hence, personalization on online stores is considered to be an important technology to companies and customers. Recommender systems that provide favorable products and customer product reviews to users are the most commonly used features in this purpose. There are many studies to that investigated the relationship between social presence as an antecedent of trust and provision of recommender systems or customer product reviews. Many online stores have made efforts to increase perceived social presence of their customers through customer reviews, recommender systems, and analyzing associations among products. Primarily because social presence can increase customer trust or reuse intention for online stores. However, there were few studies that investigated the interactions between recommendation type, product type and provision of customer product reviews on social presence. Therefore, one of the purposes of this study is to identify the effects of personalized recommender systems and compare the role of customer reviews with product types. This study performed an experiment to see these interactions. Experimental web pages were developed with $2{\times}2$ factorial setting based on how to provide social presence to users with customer reviews and two product types such as hedonic and utilitarian. The hedonic type was a ringtone chosen from Nate.com while the utilitarian was a TOEIC study aid book selected from Yes24.com. To conduct the experiment, web based experiments were conducted for the participants who have been shopping on the online stores. Participants were a total of 240 and 30% of the participants had the chance of getting the presents. We found out that social presence increased for hedonic products when personalized recommendations were given compared to non.personalized recommendations. Although providing customer reviews for two product types did not significantly increase social presence, provision of customer product reviews for hedonic (ringtone) increased perceived social presence. Otherwise, provision of customer product reviews could not increase social presence when the systems recommend utilitarian products (TOEIC study.aid books). Therefore, it appears that the effects of increasing perceived social presence with customer reviews have a difference for product types. In short, the role of customer reviews could be different based on which product types were considered by customers when they are making a decision related to purchasing on the online stores. Additionally, there were no differences for increasing perceived social presence when providing customer reviews. Our participants might have focused on how recommendations had been provided and what products were recommended because our developed systems were providing recommendations after participants rating their preferences. Thus, the effects of customer reviews could appear more clearly if our participants had actual purchase opportunity for the recommendations. Personalized recommender systems can increase social presence of customers more than nonpersonalized recommender systems by using user preference. Online stores could find out how they can increase perceived social presence and satisfaction of their customers when customers want to find the proper products with recommender systems and customer reviews. In addition, the role of customer reviews of the personalized recommendations can be different based on types of the recommended products. Even if this study conducted two product types such as hedonic and utilitarian, the results revealed that customer reviews for hedonic increased social presence of customers more than customer reviews for utilitarian. Thus, online stores need to consider the role of providing customer reviews with highly personalized information based on their product types when they develop the personalized recommender systems.

An Exploratory Study on the Components of Visual Merchandising of Internet Shopping Mall (인터넷쇼핑몰의 VMD 구성요인에 대한 탐색적 연구)

  • Kim, Kwang-Seok;Shin, Jong-Kuk;Koo, Dong-Mo
    • Journal of Global Scholars of Marketing Science
    • /
    • v.18 no.2
    • /
    • pp.19-45
    • /
    • 2008
  • This study is to empirically examine the primary dimensions of visual merchandising (VMD) of internet shopping mall, namely store design, merchandise, and merchandising cues, to be a attractive virtual store to the shoppers. The authors reviewed the literature related to the major components of VMD from the perspective of the AIDA model, which has been mainly applied to the offline store settings. The major purposes of the study are as follows; first, tries to derive the variables related with the components of visual merchandising through reviewing the existing literatures, establish the hypotheses, and test it empirically. Second, examines the relationships between the components of VMD and the attitude toward the VMD, however, putting more emphasis on finding out the component structure of the VMD. VMD needs to be examined with the perspective that an online shopping mall is a virtual self-service or clerkless store, which could reduce the number of employees, help the shoppers search, evaluate and purchase for themselves, and to be explored in terms of the in-store persuasion processes of customers. This study reviewed the literatures related to store design, merchandise, and merchandising cues which might be relevant to the store, product, and promotion respectively. VMD is a total communication tool, and AIDA model could explain the in-store consumer behavior of online shopping. Store design has to do with triggering a consumer attention to the online mall, merchandise with a product related interest, and merchandising cues with promotions such as recommendation and links that induce the desire to pruchase. These three steps might be seen as the processes for purchase actions. The theoretical rationale for the relationship between VMD and AIDA could be found in Tyagi(2005) that the three steps of consumer-oriented merchandising are a store, a product assortment, and placement, in Omar(1999) that three types of interior display are a architectural design display, commodity display, and point-of-sales(POS) display, and in Davies and Ward(2005) that the retail store interior image is related to an atmosphere, merchandise, and in-store promotion. Lee et al(2000) suggested as the web merchandising components a merchandising cues, a shopping metaphor which is an assistant tool for search, a store design, a layout(web design), and a product assortment. The store design which includes differentiation, simplicity and navigation is supposed to be related to the attention to the virtual store. Second, the merchandise dimensions comprising product assortments, visual information and product reputation have to do with the interest in the product offerings. Finally, the merchandising cues that refer to merchandiser(MD)'s recommendation of products and providing the hyperlinks to relevant goods for the shopper is concerned with attempt to induce the desire to purchase. The questionnaire survey was carried out to collect the data about the consumers who would shop at internet shopping malls frequently. To select the subject malls, the mall ranking data announced by a mall rating agency was used to differentiate the most popular and least popular five mall each. The subjects was instructed to answer the questions after navigating the designated mall for five minutes. The 300 questionnaire was distributed to the consumers, 166 samples were used in the final analysis. The empirical testing focused on identifying and confirming the dimensionality of VMD and its subdimensions using a structural equation modeling method. The confirmatory factor analysis for the endogeneous and exogeneous variables was carried out in four parts. The second-order factor analysis was done for a store design, a merchandise, and a merchandising cues, and first-order confirmatory factor analysis for the attitude toward the VMD. The model test results shows that the chi-square value of structural equation is 144.39(d.f 49), significant at 0.01 level which means the proposed model was rejected. But, judging from the ratio of chi-square value vs. degree of freedom, the ratio was 2.94 which smaller than an acceptable level of 3.0, RMR is 0.087 which is higher than a generally acceptable level of 0.08. GFI and AGFI is turned out to be 0.90 and 0.84 respectively. Both NFI and NNFI is 0.94, and CFI 0.95. The major test results are as follows; first, the second-order factor analysis and structural equational modeling reveals that the differentiation, simplicity and ease of identifying current status of the transaction are confirmed to be subdimensions of store design and to be a significant predictors of the dependent variable. This result implies that when designing an online shopping mall, it is necessary to differentiate visually from other malls to improve the effectiveness of the communications of store design. That is, the differentiated store design raise the contrast stimulus to sensory organs to promote the memory of the store and to have a favorable attitude toward the VMD of a store. The results that navigation which means the easiness of identifying current status of shopping affects the attitude to VMD could be interpreted that the navigating processes via the hyperlinks which is characteristics of an internet shopping is a complex and cognitive process and shoppers are likely to lack the sense of overall structure of the store. Consequently, shoppers are likely to be alost amid shopping not knowing where to go. The orientation tool enhance the accessibility of information to raise the perceptive power about the store environment.(Titus & Everett 1995) Second, the primary dimension of merchandise and its subdimensions was confirmed to be unidimensional respectively, have a construct validity, and nomological validity which the VMD dimensions supposed to have a positive correlation with the dependent variable. The subdimensions of product assortment, brand fame and information provision proved to have a positive effect on the attitude toward the VMD. It could be interpreted that the more plentiful the product and brand assortment of the mall is, the more likely the shoppers to favor it. Brand fame and information provision as well affect the VMD attitude, which means that the more famous the brand, the more likely the shoppers would trust and feel familiar with the mall, and the plentifully and visually presented information could have the shopper have a favorable attitude toward the store VMD. Third, it turned out to be that merchandising cue of product recommendation and hyperlinks affect the VMD attitude. This could be interpreted that recommended products could reduce the uncertainty related with the purchase decision, and the hyperlinks to relevant products would help the shopper save the cognitive effort exerted into the information search and gathering, which could lead to a favorable attitude to the VMD. This study tried to sheds some new light on the VMD of online store by reviewing the variables mentioned to be relevant with offline VMD in the existing literatures, and tried to link the VMD components from the perspective of AIDA model. The effect size of the VMD dimensions on the attitude was in the order of the merchandise, the store design and the merchandising cues.It is said that an internet has an unlimited place for display, however, the virtual store is not unlimited since the consumer has a limited amount of cognitive ability to process the external information and internal memory. Particularly, the shoppers are likely to face some difficulties in decision making on account of too many alternative and information overloads. Therefore, the internet shopping mall manager should take into consideration the cost of information search on the part of the consumer, to establish the optimal product placements and search routes. An efficient store composition would be possible by reducing the psychological burdens and cognitive efforts exerted to information search and alternatives evaluation. The store image is in most part determined by the product category and its brand it deals in. The results of this study support this proposition that the merchandise is most important to the VMD attitude than other components, the manager is required to take a strategic approach to VMD. The internet users are getting more accustomed and more knowledgeable about the internet media and more likely to accept the internet as a shopping channel as the period of time during which they use the internet to shop become longer. The web merchandiser should be aware that the product introduction using a moving pictures and a bulletin board become more important in order to present the interactive product information visually and communicate with customers more actively, therefore leading to making the quantity and quality of product information more rich.

  • PDF

The Effects of Chinese Coffee Shop Customers' Happiness on Continuous Usage Intention (중국 커피 전문점 이용고객의 해피니스가 지속이용의도에 미치는 영향에 관한 연구)

  • An, Shengnan;Zhang, Jun
    • The Journal of Industrial Distribution & Business
    • /
    • v.10 no.3
    • /
    • pp.25-33
    • /
    • 2019
  • Purpose - With the economic development in China, the lifestyle of Chinese customers has changed dramatically. Chinese customers are more likely to have coffee in a shop with the ability to make them happy than those with high quality coffee in a nice physical environment. Happiness becomes a critical driver of customers' intention to purchase a cup of coffee in a specific coffee shop again and again. As a result, happiness becomes an important factor for managers to make strategies for attracting customers. Although managers and scholars pay more attention to emphasize the importance of happiness in customers' consumption, little research has been conducted to investigate the relationship between happiness and coffee shop's continuous usage intention in the Chinese coffee industry. Research design, data, and methodology - A research model is made to explain the impact of happiness on customer's behavior. To understand the influence of happiness better, we consider two dimensions of happiness which are subjective well-being and psychological well-being. In order to confirm the relationships of the variables in the research model, the online survey is constructed in China. Customers who have experienced the services in a coffee shop are asked to do the questionnaire. With 453 reliable questionnaires, structural equation modeling is used to analyze the causal relationships of the coffee quality, physical environment, subjective well-being, psychological well-being, and continuous usage intention. Results - Results indicate that coffee quality and physical environment are not the direct factors that influence customers' continuous usage intention. However, good coffee quality and physical environment are the significant predictors of Chinese customers' happiness associated with subjective well-being and psychological well-being, which in turn affects customers' continuous usage intention. Conclusions - In this study, it is proposed that coffee quality and physical environment may be the key factors influencing customers' happiness. Happiness, including subjective well-being and psychological well-being matters in decision making process. More importantly, happiness increases the continuous usage intention when the coffee shop can serve customers with higher quality coffee at a good atmospheric place. Managers should consider happiness as an important factor in making marketing strategies to compete in this industry.

Rating Prediction by Evaluation Item through Sentiment Analysis of Restaurant Review

  • So, Jin-Soo;Shin, Pan-Seop
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.6
    • /
    • pp.81-89
    • /
    • 2020
  • Online reviews we encounter commonly on SNS, although a complex range of assessment information affecting the consumer's preferences are included, it is general that such information is just provided by simple numbers or star ratings. Based on those review types, it is not easy to get specific information that consumers want and use it to make a decision for purchase. Therefore, in this study, we propose a prediction methodology that can provide ratings broken down by evaluation items by performing sentiment analysis on restaurant reviews written in Korean. To this end, we select 'food', 'price', 'service', and 'atmosphere' as the main evaluation items of restaurants, and build a new sentiment dictionary for each evaluation item. It also classifies review sentences by rating item, predicts granular ratings through sentiment analysis, and provides additional information that consumers can use to make decisions. Finally, using MAE and RMSE as evaluation indicators it shows that the rating prediction accuracy of the proposed methodology has been improved than previous studies and presents the use case of proposed methodology.

Recycled Clothes and Its Characters Impact on Consumers' Consumption (재활용 의류와 그 특성이 소비자의 소비에 미치는 영향)

  • He, Luyao;Pan, Young Hwan
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.7
    • /
    • pp.159-167
    • /
    • 2021
  • The increasingly severe environmental problems such as resource depletion and ecological damage, and consumers' concern for sustainable fashion, make the fashion industry chain develop towards green energy saving. The purpose of this study is to explore the attitude and consumption psychology of specific groups towards sustainable fashion consumption, as well as their specific views and attitudes towards recycled textiles or fabrics for re-manufacturing clothing. This paper attempts to understand how the characteristics of recycled clothing affect consumer. Based on the review of relevant literature, a series of determinants affecting consumer behavior is determined, and the characteristics of recycled products, such as expression value and social value, are determined. An online questionnaire was designed based on this conceptual framework, and 226 valid, complete answers were received. The results show that the emphasis on social value and environmental protection consciousness can effectively affect consumers' decision-making. These findings were helpful to the research of whole green environmental protection and ecological clothing recycling industry system, promote the sustainable development of the clothing industry.

How User-Generated Content Characteristics Influence the Impulsive Consumption: Moderating Effect of Tie Strength (사용자 제작 콘텐츠 특성이 충동구매에 미치는 영향: 유대강도의 조절효과를 중심으로)

  • Weiyi Luo;Young-Chan Lee
    • Knowledge Management Research
    • /
    • v.23 no.4
    • /
    • pp.275-294
    • /
    • 2022
  • In recent years, with the continuous integrative development of e-commerce and social media, social commerce, as a trust-centered social transaction mode, has become an important performance form of e-commerce. The good experience of online community and abundant user-generated content (UGC) attract more and more users and businesses to participate in the community contribution. In this context, the cost of accessing information is continuously decreasing, which not only makes the purchase process more concise and efficient, but also greatly increases the possibility of consumers' impulsive consumption. However, there are very few empirical studies on the internal influencing mechanism of consumers' impulsive consumption based on the characteristics of UGC for social commerce. In view of this, based on S-O-R model, this study constructs a model of consumers' impulsive consumption in the context of social commerce from the characteristics of UGC, with perceived risk as the mediating variable and tie strength as the moderating variable. The results show that content authenticity, content usefulness, and content valence of UGC have significant negative impacts on consumers' risk perception in the process of purchase decision-making, and consumers' perceived risk has a significant negative impact on consumers' impulsive consumption. Meanwhile, the tie strength between UGC producer and UGC receiver plays a moderating role between content usefulness and perceived risk, as well as between perceived risk and impulsive consumption. Finally, combined with the above findings, this study provides effective suggestions for relevant participants in social commerce in terms of business management.

A Study on the Improvement of Recommendation Accuracy by Using Category Association Rule Mining (카테고리 연관 규칙 마이닝을 활용한 추천 정확도 향상 기법)

  • Lee, Dongwon
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.2
    • /
    • pp.27-42
    • /
    • 2020
  • Traditional companies with offline stores were unable to secure large display space due to the problems of cost. This limitation inevitably allowed limited kinds of products to be displayed on the shelves, which resulted in consumers being deprived of the opportunity to experience various items. Taking advantage of the virtual space called the Internet, online shopping goes beyond the limits of limitations in physical space of offline shopping and is now able to display numerous products on web pages that can satisfy consumers with a variety of needs. Paradoxically, however, this can also cause consumers to experience the difficulty of comparing and evaluating too many alternatives in their purchase decision-making process. As an effort to address this side effect, various kinds of consumer's purchase decision support systems have been studied, such as keyword-based item search service and recommender systems. These systems can reduce search time for items, prevent consumer from leaving while browsing, and contribute to the seller's increased sales. Among those systems, recommender systems based on association rule mining techniques can effectively detect interrelated products from transaction data such as orders. The association between products obtained by statistical analysis provides clues to predicting how interested consumers will be in another product. However, since its algorithm is based on the number of transactions, products not sold enough so far in the early days of launch may not be included in the list of recommendations even though they are highly likely to be sold. Such missing items may not have sufficient opportunities to be exposed to consumers to record sufficient sales, and then fall into a vicious cycle of a vicious cycle of declining sales and omission in the recommendation list. This situation is an inevitable outcome in situations in which recommendations are made based on past transaction histories, rather than on determining potential future sales possibilities. This study started with the idea that reflecting the means by which this potential possibility can be identified indirectly would help to select highly recommended products. In the light of the fact that the attributes of a product affect the consumer's purchasing decisions, this study was conducted to reflect them in the recommender systems. In other words, consumers who visit a product page have shown interest in the attributes of the product and would be also interested in other products with the same attributes. On such assumption, based on these attributes, the recommender system can select recommended products that can show a higher acceptance rate. Given that a category is one of the main attributes of a product, it can be a good indicator of not only direct associations between two items but also potential associations that have yet to be revealed. Based on this idea, the study devised a recommender system that reflects not only associations between products but also categories. Through regression analysis, two kinds of associations were combined to form a model that could predict the hit rate of recommendation. To evaluate the performance of the proposed model, another regression model was also developed based only on associations between products. Comparative experiments were designed to be similar to the environment in which products are actually recommended in online shopping malls. First, the association rules for all possible combinations of antecedent and consequent items were generated from the order data. Then, hit rates for each of the associated rules were predicted from the support and confidence that are calculated by each of the models. The comparative experiments using order data collected from an online shopping mall show that the recommendation accuracy can be improved by further reflecting not only the association between products but also categories in the recommendation of related products. The proposed model showed a 2 to 3 percent improvement in hit rates compared to the existing model. From a practical point of view, it is expected to have a positive effect on improving consumers' purchasing satisfaction and increasing sellers' sales.

Forecasting of Customer's Purchasing Intention Using Support Vector Machine (Support Vector Machine 기법을 이용한 고객의 구매의도 예측)

  • Kim, Jin-Hwa;Nam, Ki-Chan;Lee, Sang-Jong
    • Information Systems Review
    • /
    • v.10 no.2
    • /
    • pp.137-158
    • /
    • 2008
  • Rapid development of various information technologies creates new opportunities in online and offline markets. In this changing market environment, customers have various demands on new products and services. Therefore, their power and influence on the markets grow stronger each year. Companies have paid great attention to customer relationship management. Especially, personalized product recommendation systems, which recommend products and services based on customer's private information or purchasing behaviors in stores, is an important asset to most companies. CRM is one of the important business processes where reliable information is mined from customer database. Data mining techniques such as artificial intelligence are popular tools used to extract useful information and knowledge from these customer databases. In this research, we propose a recommendation system that predicts customer's purchase intention. Then, customer's purchasing intention of specific product is predicted by using data mining techniques using receipt data set. The performance of this suggested method is compared with that of other data mining technologies.

Analysis of Football Fans' Uniform Consumption: Before and After Son Heung-Min's Transfer to Tottenham Hotspur FC (국내 프로축구 팬들의 유니폼 소비 분석: 손흥민의 토트넘 홋스퍼 FC 이적 전후 비교)

  • Choi, Yeong-Hyeon;Lee, Kyu-Hye
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.3
    • /
    • pp.91-108
    • /
    • 2020
  • Korea's famous soccer players are steadily performing well in international leagues, which led to higher interests of Korean fans in the international leagues. Reflecting the growing social phenomenon of rising interests on international leagues by Korean fans, the study examined the overall consumer perception in the consumption of uniform by domestic soccer fans and compared the changes in perception following the transfers of the players. Among others, the paper examined the consumer perception and purchase factors of soccer fans shown in social media, focusing on periods before and after the recruitment of Heung-Min Son to English Premier League's Tottenham Football Club. To this end, the EPL uniform is the collection keyword the paper utilized and collected consumer postings from domestic website and social media via Python 3.7, and analyzed them using Ucinet 6, NodeXL 1.0.1, and SPSS 25.0 programs. The results of this study can be summarized as follows. First, the uniform of the club that consistently topped the league, has been gaining attention as a popular uniform, and the players' performance, and the players' position have been identified as key factors in the purchase and search of professional football uniforms. In the case of the club, the actual ranking and whether the league won are shown to be important factors in the purchase and search of professional soccer uniforms. The club's emblem and the sponsor logo that will be attached to the uniform are also factors of interest to consumers. In addition, in the decision making process of purchase of a uniform by professional soccer fan, uniform's form, marking, authenticity, and sponsors are found to be more important than price, design, size, and logo. The official online store has emerged as a major purchasing channel, followed by gifts for friends or requests from acquaintances when someone travels to the United Kingdom. Second, a classification of key control categories through the convergence of iteration correlation analysis and Clauset-Newman-Moore clustering algorithm shows differences in the classification of individual groups, but groups that include the EPL's club and player keywords are identified as the key topics in relation to professional football uniforms. Third, between 2002 and 2006, the central theme for professional football uniforms was World Cup and English Premier League, but from 2012 to 2015, the focus has shifted to more interest of domestic and international players in the English Premier League. The subject has changed to the uniform itself from this time on. In this context, the paper can confirm that the major issues regarding the uniforms of professional soccer players have changed since Ji-Sung Park's transfer to Manchester United, and Sung-Yong Ki, Chung-Yong Lee, and Heung-Min Son's good performances in these leagues. The paper also identified that the uniforms of the clubs to which the players have transferred to are of interest. Fourth, both male and female consumers are showing increasing interest in Son's league, the English Premier League, which Tottenham FC belongs to. In particular, the increasing interest in Son has shown a tendency to increase interest in football uniforms for female consumers. This study presents a variety of researches on sports consumption and has value as a consumer study by identifying unique consumption patterns. It is meaningful in that the accuracy of the interpretation has been enhanced by using a cluster analysis via convergence of iteration correlation analysis and Clauset-Newman-Moore clustering algorithm to identify the main topics. Based on the results of this study, the clubs will be able to maximize its profits and maintain good relationships with fans by identifying key drivers of consumer awareness and purchasing for professional soccer fans and establishing an effective marketing strategy.

A Study on the Effect of Network Centralities on Recommendation Performance (네트워크 중심성 척도가 추천 성능에 미치는 영향에 대한 연구)

  • Lee, Dongwon
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.1
    • /
    • pp.23-46
    • /
    • 2021
  • Collaborative filtering, which is often used in personalization recommendations, is recognized as a very useful technique to find similar customers and recommend products to them based on their purchase history. However, the traditional collaborative filtering technique has raised the question of having difficulty calculating the similarity for new customers or products due to the method of calculating similaritiesbased on direct connections and common features among customers. For this reason, a hybrid technique was designed to use content-based filtering techniques together. On the one hand, efforts have been made to solve these problems by applying the structural characteristics of social networks. This applies a method of indirectly calculating similarities through their similar customers placed between them. This means creating a customer's network based on purchasing data and calculating the similarity between the two based on the features of the network that indirectly connects the two customers within this network. Such similarity can be used as a measure to predict whether the target customer accepts recommendations. The centrality metrics of networks can be utilized for the calculation of these similarities. Different centrality metrics have important implications in that they may have different effects on recommended performance. In this study, furthermore, the effect of these centrality metrics on the performance of recommendation may vary depending on recommender algorithms. In addition, recommendation techniques using network analysis can be expected to contribute to increasing recommendation performance even if they apply not only to new customers or products but also to entire customers or products. By considering a customer's purchase of an item as a link generated between the customer and the item on the network, the prediction of user acceptance of recommendation is solved as a prediction of whether a new link will be created between them. As the classification models fit the purpose of solving the binary problem of whether the link is engaged or not, decision tree, k-nearest neighbors (KNN), logistic regression, artificial neural network, and support vector machine (SVM) are selected in the research. The data for performance evaluation used order data collected from an online shopping mall over four years and two months. Among them, the previous three years and eight months constitute social networks composed of and the experiment was conducted by organizing the data collected into the social network. The next four months' records were used to train and evaluate recommender models. Experiments with the centrality metrics applied to each model show that the recommendation acceptance rates of the centrality metrics are different for each algorithm at a meaningful level. In this work, we analyzed only four commonly used centrality metrics: degree centrality, betweenness centrality, closeness centrality, and eigenvector centrality. Eigenvector centrality records the lowest performance in all models except support vector machines. Closeness centrality and betweenness centrality show similar performance across all models. Degree centrality ranking moderate across overall models while betweenness centrality always ranking higher than degree centrality. Finally, closeness centrality is characterized by distinct differences in performance according to the model. It ranks first in logistic regression, artificial neural network, and decision tree withnumerically high performance. However, it only records very low rankings in support vector machine and K-neighborhood with low-performance levels. As the experiment results reveal, in a classification model, network centrality metrics over a subnetwork that connects the two nodes can effectively predict the connectivity between two nodes in a social network. Furthermore, each metric has a different performance depending on the classification model type. This result implies that choosing appropriate metrics for each algorithm can lead to achieving higher recommendation performance. In general, betweenness centrality can guarantee a high level of performance in any model. It would be possible to consider the introduction of proximity centrality to obtain higher performance for certain models.