• Title/Summary/Keyword: Online News Content

Search Result 67, Processing Time 0.023 seconds

An Analysis of the Comparative Importance of Heuristic Attributes Affecting Users' Voluntary Payment in Online News Content (자발적 독자구독료에 영향을 미치는 온라인 뉴스 콘텐츠의 휴리스틱 속성 간 상대적 중요도 분석)

  • Lee, Hyoung-Joo;Chung, Nuree;Yang, Sung-Byung
    • Journal of Information Technology Services
    • /
    • v.16 no.4
    • /
    • pp.177-195
    • /
    • 2017
  • Traditionally, news was consumed only through printed newspapers and broadcasting media, such as radio and television. However, the Internet has enabled people to consume news content online. Since most of online news content has been provided for free, it is not easy for news providers to charge the fixed subscription fee for online news content. Therefore, as an alternative strategy, some online news providers have tried to adopt the Pay-What-You-Want (PWYW) pricing model, which allows users (readers) to pay as much as they want after consuming news content. As this pricing model shows some possibility to grow and replace the unsuccessful monetization strategy of online news content, we therefore examined the comparative importance of seven heuristic attributes (i.e., article evaluation, article share, article comment, article information design, article length, writer SNS, and writer information) affecting readers' voluntary payment behavior through a conjoint analysis with 379 news articles collected from online news Website (i.e., Ohmynews.com) where the PWYW model has been working successfully. This study found that article share and article length are the most important factors which affect online news content users' voluntary payment. Finally, two major and eight minor propositions are suggested based on the findings of the study. This study would suggest guidelines for how to create online news content which induces much more voluntary payment.

An Analysis of the Comparative Importance of Systematic Attributes for Developing an Intelligent Online News Recommendation System: Focusing on the PWYW Payment Model (지능형 온라인 뉴스 추천시스템 개발을 위한 체계적 속성간 상대적 중요성 분석: PWYW 지불모델을 중심으로)

  • Lee, Hyoung-Joo;Chung, Nuree;Yang, Sung-Byung
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.1
    • /
    • pp.75-100
    • /
    • 2018
  • Mobile devices have become an important channel for news content usage in our daily life. However, online news content readers' resistance to online news monetization is more serious than other digital content businesses, such as webtoons, music sources, videos, and games. Since major portal sites distribute online news content free of charge to increase their traffics, customers have been accustomed to free news content; hence this makes online news providers more difficult to switch their policies on business models (i.e., monetization policy). As a result, most online news providers are highly dependent on the advertising business model, which can lead to increasing number of false, exaggerated, or sensational advertisements inside the news website to maximize their advertising revenue. To reduce this advertising dependencies, many online news providers had attempted to switch their 'free' readers to 'paid' users, but most of them failed. However, recently, some online news media have been successfully applying the Pay-What-You-Want (PWYW) payment model, which allows readers to voluntarily pay fees for their favorite news content. These successful cases shed some lights to the managers of online news content provider regarding that the PWYW model can serve as an alternative business model. In this study, therefore, we collected 379 online news articles from Ohmynews.com that has been successfully employing the PWYW model, and analyzed the comparative importance of systematic attributes of online news content on readers' voluntary payment. More specifically, we derived the six systematic attributes (i.e., Type of Article Title, Image Stimulation, Article Readability, Article Type, Dominant Emotion, and Article-Image Similarity) and three or four levels within each attribute based on previous studies. Then, we conducted content analysis to measure five attributes except Article Readability attribute, measured by Flesch readability score. Before conducting main content analysis, the face reliabilities of chosen attributes were measured by three doctoral level researchers with 37 sample articles, and inter-coder reliabilities of the three coders were verified. Then, the main content analysis was conducted for two months from March 2017 with 379 online news articles. All 379 articles were reviewed by the same three coders, and 65 articles that showed inconsistency among coders were excluded before employing conjoint analysis. Finally, we examined the comparative importance of those six systematic attributes (Study 1), and levels within each of the six attributes (Study 2) through conjoint analysis with 314 online news articles. From the results of conjoint analysis, we found that Article Readability, Article-Image Similarity, and Type of Article Title are the most significant factors affecting online news readers' voluntary payment. First, it can be interpreted that if the level of readability of an online news article is in line with the readers' level of readership, the readers will voluntarily pay more. Second, the similarity between the content of the article and the image within it enables the readers to increase the information acceptance and to transmit the message of the article more effectively. Third, readers expect that the article title would reveal the content of the article, and the expectation influences the understanding and satisfaction of the article. Therefore, it is necessary to write an article with an appropriate readability level, and use images and title well matched with the content to make readers voluntarily pay more. We also examined the comparative importance of levels within each attribute in more details. Based on findings of two studies, two major and nine minor propositions are suggested for future empirical research. This study has academic implications in that it is one of the first studies applying both content analysis and conjoint analysis together to examine readers' voluntary payment behavior, rather than their intention to pay. In addition, online news content creators, providers, and managers could find some practical insights from this research in terms of how they should produce news content to make readers voluntarily pay more for their online news content.

Factors Influencing Subscribers' Voluntary Payment Behavior on an Online News Site: Focusing on the Role of Appreciation (온라인 뉴스 사이트에서 독자의 자발적 구독료 지불행위에 영향을 미치는 요인에 대한 연구: 공감의 역할을 중심으로)

  • Lee, Hyoung-Joo;Rhee, Hosung Timothy;Yang, Sung-Byung
    • Knowledge Management Research
    • /
    • v.14 no.4
    • /
    • pp.1-17
    • /
    • 2013
  • As online communities proliferate, online news sites have received great attention in news media research. Although most of the online news sites provide contents for free, some have adopted the Pay-What-You-Want (PWYW) model by offering a voluntary payment option to the readers. In this study, we investigate the factors which influence subscribers' voluntary payment behavior on an online news site. Drawing upon both the Stimulus-Organism-Response (SOR) framework and the Elaboration Likelihood Model (ELM), we hypothesize that appreciation has a direct effect on the subscribers' voluntary payment behavior, whereas central factors (positive emotional content, cognitive content) and peripheral factors (news sharing, news article length) of the news articles have indirect impacts on voluntary payment behavior through the enhanced appreciation. Based on an empirical analysis of 172 news articles from the Korean online news site that adopted the PWYW pricing model (i.e., Ohmynews.com), we find that appreciation plays a critical role in voluntary payment behavior and that peripheral factors have significant impacts on appreciation. However, the impacts of central factors on appreciation are not found. By identifying influencing factors of subscribers' voluntary payment behavior on online news sites for the first time, this paper suggests a prospective alternative profit model for online news providers faced with fierce competition.

  • PDF

Predicting Stock Prices Based on Online News Content and Technical Indicators by Combinatorial Analysis Using CNN and LSTM with Self-attention

  • Sang Hyung Jung;Gyo Jung Gu;Dongsung Kim;Jong Woo Kim
    • Asia pacific journal of information systems
    • /
    • v.30 no.4
    • /
    • pp.719-740
    • /
    • 2020
  • The stock market changes continuously as new information emerges, affecting the judgments of investors. Online news articles are valued as a traditional window to inform investors about various information that affects the stock market. This paper proposed new ways to utilize online news articles with technical indicators. The suggested hybrid model consists of three models. First, a self-attention-based convolutional neural network (CNN) model, considered to be better in interpreting the semantics of long texts, uses news content as inputs. Second, a self-attention-based, bi-long short-term memory (bi-LSTM) neural network model for short texts utilizes news titles as inputs. Third, a bi-LSTM model, considered to be better in analyzing context information and time-series models, uses 19 technical indicators as inputs. We used news articles from the previous day and technical indicators from the past seven days to predict the share price of the next day. An experiment was performed with Korean stock market data and news articles from 33 top companies over three years. Through this experiment, our proposed model showed better performance than previous approaches, which have mainly focused on news titles. This paper demonstrated that news titles and content should be treated in different ways for superior stock price prediction.

How Content Affects Clicks: A Dynamic Model of Online Content Consumption

  • Inyoung Chae;Da Young Kim
    • Asia pacific journal of information systems
    • /
    • v.31 no.4
    • /
    • pp.606-632
    • /
    • 2021
  • With many consumers being exposed to news via social media platforms, news organizations are challenged to attract visitors and generate revenue during visits to their websites. They therefore need detailed information on how to write articles and headlines to increase visitors' engagement with the content to drive advertising revenues. For those news organizations whose business model depends mainly on advertisements, rather than subscriptions, it is particularly crucial to understand what makes the website attractive to their visitors, what drives users to stay on the website, and what factors affect a user's exit decision. The current research examines individual news consumers' choices to find patterns of increase or decrease in user engagement relative to a variety of topics, as well as to the mood or tone of the content. Using clickstream data from a major news organization, the authors develop a user-level dynamic model of clickstream behavior that takes into account the content of both headlines and stories that visitors read. The authors find that readers appear to exhibit state dependence in the tone of the articles that they read. They also show how the topics expressed in headlines can affect the amount of content readers consume when visiting the news organization to a much larger degree than the topics expressed in the content of the article. Online publishers can make use of such findings to present visitors with content that is likely to maintain and/or increase their engagement and consequently drive advertising revenue.

A New Online News Service Model, based on NewsML and UCI Systems (NewsML과 UCI를 적용한 뉴스 콘텐츠의 온라인 유통모델)

  • Park, Chang-Shin;Kil, Duke
    • 한국IT서비스학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.641-645
    • /
    • 2007
  • News contents, produced for paper readers, are more and more being used online instead of offline. Internet sites, expecially portals(naver, daum, nate etc.) are dominant marketplaces, where news are exchanged and values are added. So, establishing a new online news service system, which can satisfy news provider(copyright owner) and internet service provider together, is a necessary task under current online-dominant news service environment. UCI(Universal & Ubiquitous Content Identifier) and IPTC NewsML(News Mark-up Language) are considered as useful standards to compromise protection of news-copyright and enhancement of online use of news contents. This study is based on a real case of 'NewsBank' in korea, We expect that this study can show an inspiration to obtain two contradictory goals of copyright protection and free online use of copyright.

  • PDF

Social Media Fake News in India

  • Al-Zaman, Md. Sayeed
    • Asian Journal for Public Opinion Research
    • /
    • v.9 no.1
    • /
    • pp.25-47
    • /
    • 2021
  • This study analyzes 419 fake news items published in India, a fake-news-prone country, to identify the major themes, content types, and sources of social media fake news. The results show that fake news shared on social media has six major themes: health, religion, politics, crime, entertainment, and miscellaneous; eight types of content: text, photo, audio, and video, text & photo, text & video, photo & video, and text & photo & video; and two main sources: online sources and the mainstream media. Health-related fake news is more common only during a health crisis, whereas fake news related to religion and politics seems more prevalent, emerging from online media. Text & photo and text & video have three-fourths of the total share of fake news, and most of them are from online media: online media is the main source of fake news on social media as well. On the other hand, mainstream media mostly produces political fake news. This study, presenting some novel findings that may help researchers to understand and policymakers to control fake news on social media, invites more academic investigations of religious and political fake news in India. Two important limitations of this study are related to the data source and data collection period, which may have an impact on the results.

Analysis of Fashion News Based on News Value Assessment Criteria -Focused on Online Fashion News- (뉴스가치 평가 기준에 따른 패션 뉴스 분석 -온라인 패션 뉴스를 중심으로-)

  • Lee, Jisun;Chun, Jaehoon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.45 no.2
    • /
    • pp.285-304
    • /
    • 2021
  • Today, false news is increasing in volume, and fashion news often circulates uncritically. Therefore, an evaluation framework is needed to determine whether fashion news is accurate or good. In journalism, the judgment of good news is made through the criterion of news value factors. These factors are the criteria for assessing the likelihood of an event being reported in the news. Through the study of news value by various journalistic scholars, this study selected nine news value factors applicable to the value measurement of fashion news as the framework of analysis. Based on this, after analyzing the actual news on online fashion media, new characteristics and content were reconstructed for fashion news. As a result of the study, it was finally selected that the crucial factors were: expertise, social importance, timelessness, conflict, and negativity for measuring the value of fashion news. To assess the news value of fashion accurately, this study found that reconceptualized news values are needed, which are different from the news values of general journalism. The study is meaningful in that it explores elements and content for the development of a theoretical framework for the qualitative evaluation of fashion news.

Detecting Fake News about COVID-19 Infodemic Using Deep Learning and Content Analysis

  • Olga Chernyaeva;Taeho Hong;YongHee Kim;YoungKi Park;Gang Ren;Jisoo Ock
    • Asia pacific journal of information systems
    • /
    • v.32 no.4
    • /
    • pp.945-963
    • /
    • 2022
  • With the widespread use of social media, online social platforms like Twitter have become a place of rapid dissemination of information-both accurate and inaccurate. After the COVID-19 outbreak, the overabundance of fake information and rumours on online social platforms about the COVID-19 pandemic has spread over society as quickly as the virus itself. As a result, fake news poses a significant threat to effective virus response by negatively affecting people's willingness to follow the proper public health guidelines and protocols, which makes it important to identify fake information from online platforms for the public interest. In this research, we introduce an approach to detect fake news using deep learning techniques, which outperform traditional machine learning techniques with a 93.1% accuracy. We then investigate the content differences between real and fake news by applying topic modeling and linguistic analysis. Our results show that topics on Politics and Government services are most common in fake news. In addition, we found that fake news has lower analytic and authenticity scores than real news. With the findings, we discuss important academic and practical implications of the study.

How Are the Direction and the Intensity of Indirect Social Information such as Likes and Dislikes Related to the Deliberative Quality of Online News Content Comments? A Topic Diversity Analysis Using Topic Modeling ('좋아요'와 '싫어요'같은 간접적 사회적 정보의 방향과 강도는 온라인 뉴스 콘텐츠 댓글의 숙의의 질과 어떤 관련이 있는가? 토픽 모델링을 이용한 토픽 다양성 분석)

  • Min, Jin Young;Lee, Ae Ri
    • The Journal of Information Systems
    • /
    • v.30 no.4
    • /
    • pp.303-327
    • /
    • 2021
  • Purpose The online comments on news content have become social information and are understood based on deliberative democracy. Although the related research has focused on the relationship between online comments and their deliberative quality, the social information provided by online comments consists of not only direct information such as comments themselves but also indirect information such as 'likes' and 'dislikes'. Therefore, the research on online comments and deliberative quality should study this direct and indirect information together, and the direction and the degree of the indirect information should be also considered with them. Design/methodology/approach This study distinguishes comments by the attached 'likes' and 'dislikes', identifies highly supported and highly unsupported comments by the intensity of 'likes' and 'dislikes', and investigates the relationship between their existence and the deliberative quality measured as the topic diversity. Then, we applied topic modeling to the 2,390 news articles and their 74,385 comments collected from five news sites. Findings The topic diversities of the supported and unsupported comments are related to the topic diversity of all comments but the degree of the relationship is higher in the case of supported comments. Furthermore, the existence of highly supported and unsupported comments is led to less diversity of all comments compared to the case where those comments are absent. Particularly, when only highly supported comments are present, topic diversity was lower than in the opposite case.