• 제목/요약/키워드: Online Handwriting Recognition

검색결과 15건 처리시간 0.022초

Online Recognition of Handwritten Korean and English Characters

  • Ma, Ming;Park, Dong-Won;Kim, Soo Kyun;An, Syungog
    • Journal of Information Processing Systems
    • /
    • 제8권4호
    • /
    • pp.653-668
    • /
    • 2012
  • In this study, an improved HMM based recognition model is proposed for online English and Korean handwritten characters. The pattern elements of the handwriting model are sub character strokes and ligatures. To deal with the problem of handwriting style variations, a modified Hierarchical Clustering approach is introduced to partition different writing styles into several classes. For each of the English letters and each primitive grapheme in Korean characters, one HMM that models the temporal and spatial variability of the handwriting is constructed based on each class. Then the HMMs of Korean graphemes are concatenated to form the Korean character models. The recognition of handwritten characters is implemented by a modified level building algorithm, which incorporates the Korean character combination rules within the efficient network search procedure. Due to the limitation of the HMM based method, a post-processing procedure that takes the global and structural features into account is proposed. Experiments showed that the proposed recognition system achieved a high writer independent recognition rate on unconstrained samples of both English and Korean characters. The comparison with other schemes of HMM-based recognition was also performed to evaluate the system.

심층 학습 기반의 수기 일회성 암호 인증 시스템 (Handwritten One-time Password Authentication System Based On Deep Learning)

  • 리준;이혜영;이영준;윤수지;배병일;최호진
    • 인터넷정보학회논문지
    • /
    • 제20권1호
    • /
    • pp.25-37
    • /
    • 2019
  • 심층 학습 및 온라인 생체 인식 기반 인증의 급속한 개발에 영감을 받아, 본 논문에서는 심층 학습을 기반으로 필체 인식 및 작성자 검증을 수행하는 수기 일회성 암호 인증 시스템을 제안한다. 본 논문에서는 수기로 작성된 숫자를 인식할 수 있는 합성곱 신경망과, 입력된 필체와 실제 사용자의 필체 사이 유사성을 계산할 수 있는 Siamese 신경망을 설계한다. 본 논문에서는 작성자 검증을 위한 NIST Speical Database 19 제 2판의 첫 번째 응용 사례를 제시한다. 본 논문이 제안하는 시스템은 네 장의 입력 이미지를 기반으로 한 숫자 인식 작업에서 98.58%, 작성자 검증 작업에서 93%의 정확도를 달성했다. 본 논문의 저자들은 제안한 필체 기반 생체 인식기술이 FIDO 프레임워크 기반의 다양한 온라인 인증 서비스에 활용될 수 있을 것이라 예상한다.

Graphemes Segmentation for Arabic Online Handwriting Modeling

  • Boubaker, Houcine;Tagougui, Najiba;El Abed, Haikal;Kherallah, Monji;Alimi, Adel M.
    • Journal of Information Processing Systems
    • /
    • 제10권4호
    • /
    • pp.503-522
    • /
    • 2014
  • In the cursive handwriting recognition process, script trajectory segmentation and modeling represent an important task for large or open lexicon context that becomes more complicated in multi-writer applications. In this paper, we will present a developed system of Arabic online handwriting modeling based on graphemes segmentation and the extraction of its geometric features. The main contribution consists of adapting the Fourier descriptors to model the open trajectory of the segmented graphemes. To segment the trajectory of the handwriting, the system proceeds by first detecting its baseline by checking combined geometric and logic conditions. Then, the detected baseline is used as a topologic reference for the extraction of particular points that delimit the graphemes' trajectories. Each segmented grapheme is then represented by a set of relevant geometric features that include the vector of the Fourier descriptors for trajectory shape modeling, normalized metric parameters that model the grapheme dimensions, its position in respect to the baseline, and codes for the description of its associated diacritics.

KOHA : 새로운 온라인 한글 필기 인식 시스템 (KOHA : A New Online Korean Handwriting Recognition System)

  • 양기철;오행언;박진석;박현상
    • 한국콘텐츠학회:학술대회논문집
    • /
    • 한국콘텐츠학회 2005년도 추계 종합학술대회 논문집
    • /
    • pp.384-388
    • /
    • 2005
  • 현재 대부분의 온라인 필기 인식 시스템은 자유로운 필기 입력 방식을 사용하고 있다. 하지만 이러한 방식은 오인식이 많은 단점이 있다. 따라서 본 논문에서는 입력에 약간의 제약을 두어 오인식을 없게 한 새로운 온라인 한글 입력 시스템(KOHA)을 소개한다. KOHA는 입력창 경계선을 이용한 방식으로 오인식이 없고 획수를 줄여 속기가 가능하고 단일줄긋기(Unistroke)에 의한 문자 입력이 가능한 장점이 있다.

  • PDF

순환신경망을 이용한 한글 필기체 인식 (Hangul Handwriting Recognition using Recurrent Neural Networks)

  • 김병희;장병탁
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제23권5호
    • /
    • pp.316-321
    • /
    • 2017
  • 온라인 방식의 한글 필기체 인식 문제를 분석하고 순환신경망 기반의 해법을 모색한다. 한글 낱글자 인식 문제를 순서데이터 레이블링의 관점에서 서열 분류, 구간 분류, 시간별 분류의 세 단계로 구분하여 각각에 대한 해법을 살펴보며, 한글의 구성 원리를 고려한 해결 방안을 정리한다. 한글 2350글자에 대한 온라인 필기체 데이터에 GRU(gated recurrent unit)의 다층 구조를 가지는 서열 분류모델을 적용한 결과, 낱글자 인식 정확도는 86.2%, 초 중 종성 구성에 따른 6가지 유형 분류 정확도는 98.2%로 측정되었다. 유형 분류 모델로 획의 진행에 따른 유형 변화 역시 높은 정확도로 인식하는 결과를 통해, 순환신경망을 이용하여 순서 데이터에서 한글의 구조와 같은 고차원적 지식을 학습할 수 있음을 확인하였다.

개선된 2차원 필기 인식 모델을 이용한 3차원 온라인 필기 인식 (3D Online Handwriting Character Recognition with Modified 2D Handwriting Recognition Model)

  • 김대환;이택헌;김진형
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2005년도 한국컴퓨터종합학술대회 논문집 Vol.32 No.1 (B)
    • /
    • pp.790-792
    • /
    • 2005
  • 본 연구에서는 3차원 온라인 필기의 효과적인 인식 방법을 제안한다. 3차원 필기 시 pen-up/pen-down 정보의 구분이 없이 입력하도록 하여 사용자가 편리하게 필기하도록 하고 구분의 부정확함으로 인해 발생하는 오류를 줄인다. 또한, 기존의 2차원 필기 인식 모델을 개선하여 3차원 필기 데이터의 특성을 반영하게 함으로써 경제적이며 안정적인 인식이 가능하다. 실험 결과 제안된 인식 방법을 통해 pen-up/pen-down 정보의 구분이 없는 3차원 필기 숫자에 대해 $91.6\%$의 인식 성능을 얻었으며, 특히 인식 모델의 개선을 통해 여러획으로 이루어진 글자의 경우 높은 인식 성능의 향상을 보임을 확인하였다.

  • PDF

A Dataset of Online Handwritten Assamese Characters

  • Baruah, Udayan;Hazarika, Shyamanta M.
    • Journal of Information Processing Systems
    • /
    • 제11권3호
    • /
    • pp.325-341
    • /
    • 2015
  • This paper describes the Tezpur University dataset of online handwritten Assamese characters. The online data acquisition process involves the capturing of data as the text is written on a digitizer with an electronic pen. A sensor picks up the pen-tip movements, as well as pen-up/pen-down switching. The dataset contains 8,235 isolated online handwritten Assamese characters. Preliminary results on the classification of online handwritten Assamese characters using the above dataset are presented in this paper. The use of the support vector machine classifier and the classification accuracy for three different feature vectors are explored in our research.

Recognition of Virtual Written Characters Based on Convolutional Neural Network

  • Leem, Seungmin;Kim, Sungyoung
    • Journal of Platform Technology
    • /
    • 제6권1호
    • /
    • pp.3-8
    • /
    • 2018
  • This paper proposes a technique for recognizing online handwritten cursive data obtained by tracing a motion trajectory while a user is in the 3D space based on a convolution neural network (CNN) algorithm. There is a difficulty in recognizing the virtual character input by the user in the 3D space because it includes both the character stroke and the movement stroke. In this paper, we divide syllable into consonant and vowel units by using labeling technique in addition to the result of localizing letter stroke and movement stroke in the previous study. The coordinate information of the separated consonants and vowels are converted into image data, and Korean handwriting recognition was performed using a convolutional neural network. After learning the neural network using 1,680 syllables written by five hand writers, the accuracy is calculated by using the new hand writers who did not participate in the writing of training data. The accuracy of phoneme-based recognition is 98.9% based on convolutional neural network. The proposed method has the advantage of drastically reducing learning data compared to syllable-based learning.

비트맵 파라미터를 이용한 온라인 필기체 문자인식 (Online Cursive Handwriting Character Recognition Using a Bitmap Parameter)

  • 석수영;김민정;정호열;정현열
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 제14회 신호처리 합동 학술대회 논문집
    • /
    • pp.421-424
    • /
    • 2001
  • 개별적인 인식기를 하나의 단일 인식 시스템으로 구성하여 음성과 문자를 인식할 수 있는 공용인식시스템의 성능향상을 위해 온라인 필기에서 전역적인 정보를 추출할 수 있는 비트맵 파라미터 추출 방법을 제안하였다. 제안된 방식에서는 고속의 파라미터 추출을 위해 보간법을 이용한 재샘플링 과정 대신에 새로운 시간열을 구성하는 방식을 이용한다. 제안한 비트맵 파라미터를 본 연구실에서 개발한 음성/문자 공용인식 시스템에 적용하기 위하여 67개의 자소를 5상태 10천이 CHMM(Continuous Hidden Markov Model)모델로 구성한 다음 인식알고리즘으로서는 상태단위로 지속 시간 정보를 제어하는 OnePassDP법을 이용하였다. 실험결과, 제안한 방법을 이용한 경우, 자소인식률은 61.3%에서 85.3%로 24%의 인식률 향상을 가져왔으며, 글자인식률은 64.3%에서 82.2%로 17.9%의 인식률 향상을 가져와 제안한 방법의 유효성을 확인할 수 있었다.

  • PDF

연결획 모델을 이용한 온라인 공간필기 인식 (Online 3D Space Handwriting Recognition Using Ligature Model)

  • 김대환;최현일;이택헌;김진형
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2006년도 한국컴퓨터종합학술대회 논문집 Vol.33 No.1 (B)
    • /
    • pp.289-291
    • /
    • 2006
  • 본 연구에서는 온라인 공간 필기를 인식 시스템을 구성하는 방법을 제안한다. 공간 필기 인식은 데이터의 부족으로 인한 한계를 지니고 있다 공간필기와 기존의 펜과 태블릿을 이용한 필기 사이의 차이가 연결획에 있다는 사실에 착안하여, 공간 필기 데이터로는 연결획만을 모델링하고. 나머지 부분은 기존의 수집된 데이터 흑은 모델을 이용함으로써, 데이터 부족 문제를 효과적으로 해결하였다.

  • PDF