• 제목/요약/키워드: Online Handwriting

검색결과 22건 처리시간 0.026초

개선된 2차원 필기 인식 모델을 이용한 3차원 온라인 필기 인식 (3D Online Handwriting Character Recognition with Modified 2D Handwriting Recognition Model)

  • 김대환;이택헌;김진형
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2005년도 한국컴퓨터종합학술대회 논문집 Vol.32 No.1 (B)
    • /
    • pp.790-792
    • /
    • 2005
  • 본 연구에서는 3차원 온라인 필기의 효과적인 인식 방법을 제안한다. 3차원 필기 시 pen-up/pen-down 정보의 구분이 없이 입력하도록 하여 사용자가 편리하게 필기하도록 하고 구분의 부정확함으로 인해 발생하는 오류를 줄인다. 또한, 기존의 2차원 필기 인식 모델을 개선하여 3차원 필기 데이터의 특성을 반영하게 함으로써 경제적이며 안정적인 인식이 가능하다. 실험 결과 제안된 인식 방법을 통해 pen-up/pen-down 정보의 구분이 없는 3차원 필기 숫자에 대해 $91.6\%$의 인식 성능을 얻었으며, 특히 인식 모델의 개선을 통해 여러획으로 이루어진 글자의 경우 높은 인식 성능의 향상을 보임을 확인하였다.

  • PDF

비트맵 파라미터를 이용한 온라인 필기체 문자인식 (Online Cursive Handwriting Character Recognition Using a Bitmap Parameter)

  • 석수영;김민정;정호열;정현열
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 제14회 신호처리 합동 학술대회 논문집
    • /
    • pp.421-424
    • /
    • 2001
  • 개별적인 인식기를 하나의 단일 인식 시스템으로 구성하여 음성과 문자를 인식할 수 있는 공용인식시스템의 성능향상을 위해 온라인 필기에서 전역적인 정보를 추출할 수 있는 비트맵 파라미터 추출 방법을 제안하였다. 제안된 방식에서는 고속의 파라미터 추출을 위해 보간법을 이용한 재샘플링 과정 대신에 새로운 시간열을 구성하는 방식을 이용한다. 제안한 비트맵 파라미터를 본 연구실에서 개발한 음성/문자 공용인식 시스템에 적용하기 위하여 67개의 자소를 5상태 10천이 CHMM(Continuous Hidden Markov Model)모델로 구성한 다음 인식알고리즘으로서는 상태단위로 지속 시간 정보를 제어하는 OnePassDP법을 이용하였다. 실험결과, 제안한 방법을 이용한 경우, 자소인식률은 61.3%에서 85.3%로 24%의 인식률 향상을 가져왔으며, 글자인식률은 64.3%에서 82.2%로 17.9%의 인식률 향상을 가져와 제안한 방법의 유효성을 확인할 수 있었다.

  • PDF

불완전 시계열 데이터를 위한 이산 HMM 학습 알고리듬 (Discrete HMM Training Algorithm for Incomplete Time Series Data)

  • 신봉기
    • 한국멀티미디어학회논문지
    • /
    • 제19권1호
    • /
    • pp.22-29
    • /
    • 2016
  • Hidden Markov Model is one of the most successful and popular tools for modeling real world sequential data. Real world signals come in a variety of shapes and variabilities, among which temporal and spectral ones are the prime targets that the HMM aims at. A new problem that is gaining increasing attention is characterizing missing observations in incomplete data sequences. They are incomplete in that there are holes or omitted measurements. The standard HMM algorithms have been developed for complete data with a measurements at each regular point in time. This paper presents a modified algorithm for a discrete HMM that allows substantial amount of omissions in the input sequence. Basically it is a variant of Baum-Welch which explicitly considers the case of isolated or a number of omissions in succession. The algorithm has been tested on online handwriting samples expressed in direction codes. An extensive set of experiments show that the HMM so modeled are highly flexible showing a consistent and robust performance regardless of the amount of omissions.

Recognition of Virtual Written Characters Based on Convolutional Neural Network

  • Leem, Seungmin;Kim, Sungyoung
    • Journal of Platform Technology
    • /
    • 제6권1호
    • /
    • pp.3-8
    • /
    • 2018
  • This paper proposes a technique for recognizing online handwritten cursive data obtained by tracing a motion trajectory while a user is in the 3D space based on a convolution neural network (CNN) algorithm. There is a difficulty in recognizing the virtual character input by the user in the 3D space because it includes both the character stroke and the movement stroke. In this paper, we divide syllable into consonant and vowel units by using labeling technique in addition to the result of localizing letter stroke and movement stroke in the previous study. The coordinate information of the separated consonants and vowels are converted into image data, and Korean handwriting recognition was performed using a convolutional neural network. After learning the neural network using 1,680 syllables written by five hand writers, the accuracy is calculated by using the new hand writers who did not participate in the writing of training data. The accuracy of phoneme-based recognition is 98.9% based on convolutional neural network. The proposed method has the advantage of drastically reducing learning data compared to syllable-based learning.

연결획 모델을 이용한 온라인 공간필기 인식 (Online 3D Space Handwriting Recognition Using Ligature Model)

  • 김대환;최현일;이택헌;김진형
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2006년도 한국컴퓨터종합학술대회 논문집 Vol.33 No.1 (B)
    • /
    • pp.289-291
    • /
    • 2006
  • 본 연구에서는 온라인 공간 필기를 인식 시스템을 구성하는 방법을 제안한다. 공간 필기 인식은 데이터의 부족으로 인한 한계를 지니고 있다 공간필기와 기존의 펜과 태블릿을 이용한 필기 사이의 차이가 연결획에 있다는 사실에 착안하여, 공간 필기 데이터로는 연결획만을 모델링하고. 나머지 부분은 기존의 수집된 데이터 흑은 모델을 이용함으로써, 데이터 부족 문제를 효과적으로 해결하였다.

  • PDF

한글 온라인 필기 인식을 위한 전처리 모듈 개발 (Development of Preprocessing module for Korean online handwriting recognition)

  • 정민진;정다빈;이강은;김성석;양순옥
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2019년도 추계학술발표대회
    • /
    • pp.63-65
    • /
    • 2019
  • 본 논문은 개발하고자 하는 기계학습 기반 한글 필기 인식 시스템의 첫 연구 결과를 담고 있다. 즉, 기계학습을 위해서는 학습용 및 테스트용 필기 데이터가 아주 많이 필요하므로, 이를 수집하고 전처리하는 방법을 제안하였다. 한글의 한 글자는 자음과 모음을 결합하여 생성되는데, 실제 만 개 이상의 글자가 생성될 수 있다. 따라서 각각의 글자 데이터를 수집하는 대신, 수집한 글자 데이터로부터 초성, 중성, 종성을 구분하여 최종적으로 자음, 모음 데이터로 저장하고자 한다. 아직 초기 연구이므로, 다양한 경우에 대한 분석이나 실험 결과는 없지만, 이를 활용하여 온라인 필기 인식 모델에 적용하여 인식 성능을 높이기 위한 추후 연구의 기반으로 활용하고자 한다.

Augmentation of Hidden Markov Chain for Complex Sequential Data in Context

  • Sin, Bong-Kee
    • Journal of Multimedia Information System
    • /
    • 제8권1호
    • /
    • pp.31-34
    • /
    • 2021
  • The classical HMM is defined by a parameter triple �� = (��, A, B), where each parameter represents a collection of probability distributions: initial state, state transition and output distributions in order. This paper proposes a new stationary parameter e = (e1, e2, …, eN) where N is the number of states and et = P(|xt = i, y) for describing how an input pattern y ends in state xt = i at time t followed by nothing. It is often said that all is well that ends well. We argue here that all should end well. The paper sets the framework for the theory and presents an efficient inference and training algorithms based on dynamic programming and expectation-maximization. The proposed model is applicable to analyzing any sequential data with two or more finite segmental patterns are concatenated, each forming a context to its neighbors. Experiments on online Hangul handwriting characters have proven the effect of the proposed augmentation in terms of highly intuitive segmentation as well as recognition performance and 13.2% error rate reduction.

일반 필기데이터와 CNN을 이용한 온라인 서명인식 (Online Signature Verification using General Handwriting Data and CNN)

  • 박민주;윤희용
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2020년도 춘계학술발표대회
    • /
    • pp.540-543
    • /
    • 2020
  • 본 논문에서는 대표적인 이미지 분류 모델인 CNN(Convolutional Neural Network)과 시간에 따른 이미지의 변화를 학습할 수 있는 LSTM(Long Short-Term Memory) 기반의 온라인 서명인식 모델을 제안한다. 실제로는 위조서명을 미리 구하기 어렵다는 사실을 고려해 서명검증 대상자가 아닌 타인의 진서명과 대상자의 일반 필기 데이터를 음의 데이터로서 학습에 사용하였다. 실험 결과, 전체 이미지 중 서명 부분의 비율에 따라 좋은 성능을 보이는 검증 모델이 다르며 Accuracy 성능지표를 통해 이 비율이 높거나 낮을 경우 CNN-LSTM 이, 중간일 경우 CNN 이 적합하다는 것을 확인하였다.

온라인 한글 필기 인식 알고리즘 개발 (Development of Algorithm for Online Handwriting Hangul Recognition)

  • 정다빈;이강은;정민진;문창진;김성석;김재현;양순옥
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2020년도 추계학술발표대회
    • /
    • pp.1000-1003
    • /
    • 2020
  • 본 논문은 기계학습 기반 온라인 한글 필기 인식 시스템의 첫 구현 결과를 담고 있다. 한글의 글자는 최소한 하나의 모음을 포함하고 있으며, 이 모음은 대개 직선으로 필기한다는 사전 지식을 활용하여 인식에 적용하고자 한다. 이를 위해 사용자가 온라인으로 필기하면 획 데이터를 획득하여 중성에 해당하는 모음을 찾는 알고리즘을 개발하였다. 제안한 알고리즘에서는, 우선 필기한 글자를 포함하는 사각형 R과 각 획을 둘러싸는 사각형 SR을 생성한 후, 직선을 판별하고, 이 직선들이 모음을 구성하는 후보군을 찾는 과정으로 구성되어 있다. 아직 초기 연구이므로, 다양한 경우에 대한 분석이나 실험 결과는 없지만, 이를 활용하여 온라인 필기 인식 모델에 적용하여 인식 성능을 높이기 위한 추후 연구의 기반으로 활용하고자 한다.

HBIC와 BIC_Anti 기준을 이용한 HMM 구조의 최적화 (HMM Topology Optimization using HBIC and BIC_Anti Criteria)

  • 박미나;하진영
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제30권9호
    • /
    • pp.867-875
    • /
    • 2003
  • 본 논문에서는 연속 밀도 HMM 구조의 최적화 문제를 다룬다. HMM 구조의 최적화를 위해 여러 연구가 있었는데, 그 중에서도 잘 알려진 BIC(Bayesian Information Citerion)등과 같이 이미 제안된 모델 선택 기준은 동질의 파라미터를 갖는 데이타에 대해 통계적으로 잘 행동하는 모델을 가정하고 있어서 연속 밀도 HMM 등과 같이 복잡한 파라미터를 갖는 구조에는 적합하지 않고, 파라미터 수를 줄이는데는 어느 정도 효과가 있었으나 인식률 향상에 있어서는 한계를 보였다. 이에 본 논문에서는 HMM의 파라미터 유형에 따라 별도의 확률 밀도를 추정하여 사전 모델 확률(a priori model probability)로 사용하는 모델 선택 기준인 HBIC(HMM-oriented BIC)를 제안했다. 또한 HMM의 변별력을 높이기 위해 변별력 특성을 갖는 안티확률을 BIC와 결합한 새로운 모델 선택 기준인 BIC_Anti를 제안했다. 제안한 모델 선택 기준의 유용성을 검증하기 위해 온라인 필기 데이타를 대상으로 실험하여 기존의 연구와 비교하였다. 그 결과 제안한 HBIC와 BIC_Anti 모델 선택 기준을 사용하는 것이 BIC를 사용하는 것보다 더 적은 파라미터 수로도 향상된 인식률을 얻을 수 있음을 확인했다.