• 제목/요약/키워드: Online Feature Registration

검색결과 3건 처리시간 0.015초

3차원 기하정보 및 특징점 추적을 이용한 다시점 거리영상의 온라인 정합 (Online Multi-view Range Image Registration using Geometric and Photometric Feature Tracking)

  • 백재원;문재경;박순용
    • 정보처리학회논문지B
    • /
    • 제14B권7호
    • /
    • pp.493-502
    • /
    • 2007
  • 본 논문에서는 물체의 3차원 모델을 복원하기 위하여 거리영상 카메라에서 획득한 다시점 3차원 거리영상을 온라인으로 정합(registration)하는 기술을 제안한다. 3차원 모델 복원을 위하여 거리영상 카메라를 복원하고자하는 물체 주위로 이동하여 연속된 다시점 거리영상과 사진영상을 획득하고 물체와 배경을 분리한다. 분리된 다시점 거리영상의 정합을 위하여 이미 등록된 거리영상의 변환정보 그리고 두 거리영상 사이의 기하정보를 이용하여 정합을 초기화한다. 위 과정을 통해 서로 인접한 거리영상에서 영상 특징점을 선택하고 특징점에 해당하는 거리영상의 3차원 점군을 이용하여 투영 기반(projection-based) 정합을 실시한다. 기하정합이 완료되면 사진영상 간의 대응점을 추적하여 정합을 정제(refinement)하는 과정을 거치는데 KLT (Kanade-Lucas-Tomasi) 추적기를 수정하여 대응점 탐색의 속도와 성공률을 증가시켰다. 영상 특징점과 추적된 대응점에 해당하는 3차원 점군을 이용하여 거리영상을 정제하였다. 정합과 정제의 결과를 통해 추정된 변환 행렬과 정합된 대응점들 사이의 거리를 계산하여 정합 결과를 검증하고 거리영상의 사용 여부를 결정한다. 만약 정합이 실패하더라도 경우에도 거리영상을 실시간으로 계속 획득하고 정합을 다시 시도한다. 위와 같은 과정을 반복하여 충분한 거리 영상을 획득하고 정합이 완료되면 오프라인에서 3차원 모델을 합성하였다. 실험 결과들을 통해 제안한 방법이 3차원 모델을 성공적으로 복원할 수 있음을 확인 할 수 있었고 오차 분석을 통해 모델 복원의 정확도를 검증하였다.

Web-based University Classroom Attendance System Based on Deep Learning Face Recognition

  • Ismail, Nor Azman;Chai, Cheah Wen;Samma, Hussein;Salam, Md Sah;Hasan, Layla;Wahab, Nur Haliza Abdul;Mohamed, Farhan;Leng, Wong Yee;Rohani, Mohd Foad
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권2호
    • /
    • pp.503-523
    • /
    • 2022
  • Nowadays, many attendance applications utilise biometric techniques such as the face, fingerprint, and iris recognition. Biometrics has become ubiquitous in many sectors. Due to the advancement of deep learning algorithms, the accuracy rate of biometric techniques has been improved tremendously. This paper proposes a web-based attendance system that adopts facial recognition using open-source deep learning pre-trained models. Face recognition procedural steps using web technology and database were explained. The methodology used the required pre-trained weight files embedded in the procedure of face recognition. The face recognition method includes two important processes: registration of face datasets and face matching. The extracted feature vectors were implemented and stored in an online database to create a more dynamic face recognition process. Finally, user testing was conducted, whereby users were asked to perform a series of biometric verification. The testing consists of facial scans from the front, right (30 - 45 degrees) and left (30 - 45 degrees). Reported face recognition results showed an accuracy of 92% with a precision of 100% and recall of 90%.

SIFT 특징을 이용하여 중첩상황에 강인한 AAM 기반 얼굴 추적 (Robust AAM-based Face Tracking with Occlusion Using SIFT Features)

  • 엄성은;장준수
    • 정보처리학회논문지B
    • /
    • 제17B권5호
    • /
    • pp.355-362
    • /
    • 2010
  • 얼굴추적은 3차원 공간상에서 머리(head)와 안면(face)의 움직임을 추정하는 기술로, 얼굴 표정 감정인식과 같은 상위 분석단계의 중요한 기반기술이다. 본 논문에서는 AAM 기반의 얼굴추적 알고리즘을 제안한다. AAM은 변형되는 대상을 분할하고 추적하는데 광범위하게 적용되고 있다. 그러나 여전히 여러 가지 해결해야할 제약사항들이 있다. 특히 자체중첩(self-occlusion)과 부분적인 중첩, 그리고 일시적으로 완전히 가려지는 완전중첩 상황에서 보통 국부해에 수렴(local convergence)하거나 발산하기 쉽다. 본 논문에서는 이러한 중첩상황에 대한 AAM의 강인성을 향상시키기 위해서 SIFT 특징을 이용하고 있다. SIFT는 일부 영상의 특징점으로 안정적인 추적이 가능하기 때문에 자체와 부분중첩에 효과적이며, 완전중첩의 상황에도 SIFT의 전역적인 매칭성능으로 별도의 재초기화 없이 연속적인 추적이 가능하다. 또한 추적과정에서 큰 자세변화에 따른 움직임을 효과적으로 추정하기 위해서 다시점(multi-view) 얼굴영상의 SIFT 특징을 온라인으로 등록하여 활용하고 있다. 제안한 알고리즘의 이러한 강인성은 위 세 가지 중첩상황에 대해서 기존 알고리즘들과의 비교실험을 통해서 보여준다.