• Title/Summary/Keyword: Online Algorithm

Search Result 597, Processing Time 0.027 seconds

An adaptive deviation-resistant neutron spectrum unfolding method based on transfer learning

  • Cao, Chenglong;Gan, Quan;Song, Jing;Yang, Qi;Hu, Liqin;Wang, Fang;Zhou, Tao
    • Nuclear Engineering and Technology
    • /
    • v.52 no.11
    • /
    • pp.2452-2459
    • /
    • 2020
  • Neutron spectrum is essential to the safe operation of reactors. Traditional online neutron spectrum measurement methods still have room to improve accuracy for the application cases of wide energy range. From the application of artificial neural network (ANN) algorithm in spectrum unfolding, its accuracy is difficult to be improved for lacking of enough effective training data. In this paper, an adaptive deviation-resistant neutron spectrum unfolding method based on transfer learning was developed. The model of ANN was trained with thousands of neutron spectra generated with Monte Carlo transport calculation to construct a coarse-grained unfolded spectrum. In order to improve the accuracy of the unfolded spectrum, results of the previous ANN model combined with some specific eigenvalues of the current system were put into the dataset for training the deeper ANN model, and fine-grained unfolded spectrum could be achieved through the deeper ANN model. The method could realize accurate spectrum unfolding while maintaining universality, combined with detectors covering wide energy range, it could improve the accuracy of spectrum measurement methods for wide energy range. This method was verified with a fast neutron reactor BN-600. The mean square error (MSE), average relative deviation (ARD) and spectrum quality (Qs) were selected to evaluate the final results and they all demonstrated that the developed method was much more precise than traditional spectrum unfolding methods.

Sentiment Analysis of movie review for predicting movie rating (영화리뷰 감성 분석을 통한 평점 예측 연구)

  • Jo, Jung-Tae;Choi, Sang-Hyun
    • Management & Information Systems Review
    • /
    • v.34 no.3
    • /
    • pp.161-177
    • /
    • 2015
  • Currently, the influence of the Internet portal sites that can make it quick and easy to contact the vast amount of information is increasing. Users can connect the Internet through a portal to obtain information, such as communication between Internet users, which can be used to meet a variety of purposes. People are exposed to a variety of information from other users in the search for a movie and get information. The impact on the reviews and ratings with the limited number of characters of the film allows users to form a relationship to the movie, decide whether you want to see the movie or find another movie. but, the user can not read the whole movie review. When user see the overall evaluation, the user can receive the correct information. This research conducted a study on the prediction of the rating by the use of review data. Information of reviews, is divided into two main areas: the"fact" and "opinion". "Fact" is to convey the dispassionate information and "Opinion" is, to represent the user's feelings. In this study, we built sentiment dictionary based on the assessment and evaluation of the online review and applied to evaluate other movies. In the comparative study with a simple emotion evaluation technique, we found the suggested algorithm got the more accurate results.

  • PDF

Optimizing Similarity Threshold and Coverage of CBR (사례기반추론의 유사 임계치 및 커버리지 최적화)

  • Ahn, Hyunchul
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.2 no.8
    • /
    • pp.535-542
    • /
    • 2013
  • Since case-based reasoning(CBR) has many advantages, it has been used for supporting decision making in various areas including medical checkup, production planning, customer classification, and so on. However, there are several factors to be set by heuristics when designing effective CBR systems. Among these factors, this study addresses the issue of selecting appropriate neighbors in case retrieval step. As the criterion for selecting appropriate neighbors, conventional studies have used the preset number of neighbors to combine(i.e. k of k-nearest neighbor), or the relative portion of the maximum similarity. However, this study proposes to use the absolute similarity threshold varying from 0 to 1, as the criterion for selecting appropriate neighbors to combine. In this case, too small similarity threshold value may make the model rarely produce the solution. To avoid this, we propose to adopt the coverage, which implies the ratio of the cases in which solutions are produced over the total number of the training cases, and to set it as the constraint when optimizing the similarity threshold. To validate the usefulness of the proposed model, we applied it to a real-world target marketing case of an online shopping mall in Korea. As a result, we found that the proposed model might significantly improve the performance of CBR.

A Rule-driven Automatic Learner Grouping System Supporting Various Class Types (다양한 수업 유형을 지원하는 규칙 기반 학습자 자동 그룹핑 시스템)

  • Kim, Eun-Hee;Park, Jong-Hyun;Kang, Ji-Hoon
    • Journal of The Korean Association of Information Education
    • /
    • v.14 no.3
    • /
    • pp.291-300
    • /
    • 2010
  • Group-based learning is known to be an effective means to improve scholastic achievement in online learning. Therefore, there are some previous researches for the group-based learning. A lot of previous researches define factors for grouping from the characteristics of classes, teacher's decision and students' preferences and then generate a group based on the defined factors. However, many algorithms proposed by previous researches depend on a specific class and is not a general approach since there exist several differences in terms of the need of courses, learners, and teachers. Moreover it is hard to find a automatic system for group generation. This paper proposes a grouping system which automatically generate a learner group according to characteristics of various classes. the proposed system automatically generates a learner group by using basic information for a class or additional factors inputted from a user. The proposed system defines a set of rules for learner grouping which enables automatic selection of a learner grouping algorithm tailored to the characteristics of a given class. This rule based approach allows the proposed system to accommodate various learner grouping algorithms for a later use. Also we show the usability of our system by serviceability evaluation.

  • PDF

Creating Cultural Heritage though 'Silkroadpia' - Reconstructing the Routes of the Baekje Restoration Movement ('실크로드피아(Silkroadpia)'의 활용과 문화유산의 창출 - 백제부흥운동의 경로복원을 중심으로)

  • Cho, Daeyoun
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.1
    • /
    • pp.343-350
    • /
    • 2020
  • In this paper, we present the results of research on the reconstruction of ancient routes of ancient civilization exchange that were once present in the North Jeolla region, which was undertaken by adopting a convergent approach to develop 'Silkroadpia', which is an online platform for the curation and sharing of archaeological and historical spatial data, and 'MEPTA(Multiple Evidence Based Path and Territory Finding Algorithm)'. The results of the research make it possible to reconsider the region's historical identity and its important role in facilitating cultural exchange on the Korean Peninsula and in East Asia. The results can also be used to provide the theoretical basis for the government's land planning policies and for the production of cultural contents that can be used for local regeneration. The ancient route associated with the Baekje Restoration Movement, that took place after the fall of Sabi in 660 CE, was the case study examined in this paper, which discusses the academic value of reconstructing the ancient route, as well as its future use in providing cultural contents.

Coherence Time Estimation for Performance Improvement of IEEE 802.11n Link Adaptation (IEEE 802.11n에서 전송속도 조절기법의 성능 향상을 위한 Coherence Time 예측 방식)

  • Yeo, Chang-Yeon;Choi, Mun-Hwan;Kim, Byoung-Jin;Choi, Sung-Hyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.3A
    • /
    • pp.232-239
    • /
    • 2011
  • IEEE 802.11n standard provides a framework for new link adaptation. A station can request that another station provide a Modulation and Coding Scheme (MCS) feedback, to fully exploit channel variations on a link. However, if the time elapsed between MCS feedback request and the data frame transmission using the MCS feedback becomes bigger, the previously received feedback information may be obsolete. In that case, the effectiveness of the feedback-based link adaptation is compromised. If a station can estimate how fast the channel quality to the target station changes, it can improve accuracy of the link adaptation. The contribution of this paper is twofold. First, through a thorough NS-2 simulation, we show how the coherence time affects the performance of the MCS feedback based link adaptation of 802.11n networks. Second, this paper proposes an effective algorithm for coherence time estimation. Using Allan variance information statistic, a station estimates the coherence time of the receiving link. A proposed link adaptation scheme considering the coherence time can provide better performance.

A Topic Analysis of Abstracts in Journal of Korean Data Analysis Society (한국자료분석학회지에 대한 토픽분석)

  • Kang, Changwan;Kim, Kyu Kon;Choi, Seungbae
    • Journal of the Korean Data Analysis Society
    • /
    • v.20 no.6
    • /
    • pp.2907-2915
    • /
    • 2018
  • Journal of the Korean Data Analysis Society founded in 1998 has played the role of a major application journal. In this study, we checked the objective of this journal by checking the abstracts for 10 years. Abstract data was crawled from the online journal site (kdas.jems.or.kr) and analyzed by topic model. As a result, we found 18 topics from 2680 abstracts that had several contents, for example, nursing, marketing, economics, regression, factor analysis, data mining and statistical inferences. Topic1 (regression) is most frequent with 460 documents and we found the usefulness of regression in the applied science area. We confirmed the significant 10 association rules using by Fisher's exact test. Also, for exploring the trend of topics, we conducted the topic analysis for two periods which are 2006-2011 period and 2012-2016 period. We found that the control study was more frequent than survey study over time and regression and factor analysis were frequent regardless of time.

A study on ICO-based fund investment (ICO 기반 자금 투자에 대한 연구)

  • Yoo, Soonduck
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.5
    • /
    • pp.25-32
    • /
    • 2019
  • The purpose of this study is to investigate how to make a proper investment in ICO in the market. Previously, companies used to borrow money from banks or to obtain investments from venture capital (VC) and angel investors, but now ICOs are used as a new type of funding and financing model. The ICO sells the tokens or coins created on the blockchain openly online to raise the necessary funds, and provides the market value by paying the tokens or coins as much as the investment amount. According to this study, the limitations of the ICO market are (1) difficulties in evaluating the company, (2) uncertainties in investments, (3) lack of legal safeguards, and (4) measures to secure corporate stability after recruitment. At present, there is no way to cope with this systematically since the ICO is not protected in the legal framework. Nevertheless, we investigated the ways to make proper investment in the existing ICO market. In investing in ICO, investors should (1) consider investment methods and profitability, and (2) verify and judge investment fraud through various channels (ex. Homepage, composition team profile, etc.) and make investments based on this. This study will contribute to the formation of a healthy ICO market by understanding the newly emerged ICO market and studying the considerations when investing in it, thereby contributing to the right investor training and reducing the mass production of consumer damages caused by fraud. The limitation of this study is that the domestic ICO has not yet been examined in the legal framework, so further research is needed when policy changes occur in the future.

An analysis of operation status depending on the characteristics of R&D projects in Sciences and Engineering universities (이공계 대학 연구과제 특성 별 운영 형태 현황)

  • Lee, Sang-Soog;Yoo, Inhyeok;Kim, Jinhee
    • Journal of Digital Convergence
    • /
    • v.20 no.4
    • /
    • pp.93-100
    • /
    • 2022
  • This study aimed to understand the current status of science and engineering university(SEU) R&D operations depending on the research project characteristics(e.g., stages and characteristics), then provide implications for future university R&D support systems and related policies. Hence, an online survey targeting SEU R&D recipients was conducted between October 4th to November 5th, 2021. Analyzing 445 valid data using the Apriori algorithm, 16 association rules for R&D operation according to the research project characteristics show that regardless of research characteristics, SEU's R&D projects, particularly in applied research, were funded or operated under the leadership of government or public institutions. For basic research, individual researchers had a higher level of autonomy in determining research topics; yet, they had a short duration (3 years) and a unit of evaluation period of more than 3 years. These findings can be empirical evidence for revealing the relationship among various variables in operating SEUs' R&D.

Textile material classification in clothing images using deep learning (딥러닝을 이용한 의류 이미지의 텍스타일 소재 분류)

  • So Young Lee;Hye Seon Jeong;Yoon Sung Choi;Choong Kwon Lee
    • Smart Media Journal
    • /
    • v.12 no.7
    • /
    • pp.43-51
    • /
    • 2023
  • As online transactions increase, the image of clothing has a great influence on consumer purchasing decisions. The importance of image information for clothing materials has been emphasized, and it is important for the fashion industry to analyze clothing images and grasp the materials used. Textile materials used for clothing are difficult to identify with the naked eye, and much time and cost are consumed in sorting. This study aims to classify the materials of textiles from clothing images based on deep learning algorithms. Classifying materials can help reduce clothing production costs, increase the efficiency of the manufacturing process, and contribute to the service of recommending products of specific materials to consumers. We used machine vision-based deep learning algorithms ResNet and Vision Transformer to classify clothing images. A total of 760,949 images were collected and preprocessed to detect abnormal images. Finally, a total of 167,299 clothing images, 19 textile labels and 20 fabric labels were used. We used ResNet and Vision Transformer to classify clothing materials and compared the performance of the algorithms with the Top-k Accuracy Score metric. As a result of comparing the performance, the Vision Transformer algorithm outperforms ResNet.