• Title/Summary/Keyword: One-step coating

Search Result 46, Processing Time 0.022 seconds

Polyaniline Prepared by One-step Emulsion Polymerization and Its Conducting Blends (원-스텝 에멀젼 중합법으로 제조된 폴리아닐린과 이를 이용한 전도성 블렌드)

  • 이보현;김태영;김종은;서광석
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.2
    • /
    • pp.153-161
    • /
    • 2002
  • Stable polyaniline-dodecylbenzenesulfonic acid(PANI-DBSA) fully dissolved in toluene was obtained by a direct one-step emulsion polymerization technique. By using the proper molar ratio of APS/aniline monomer and DBSA/aniline monomer, the highest conductivity(7 S/cm) of PANI was obtained. The UV-Vis absorption spectrum of PANI confirmed PANI is emeraldine salt form. PANI/styrene polymers (polystyrene and styrene-butadiene copolymer) blends were prepared by mixing PANI solution with polymers in toluene. These blends exhibited the conductivity of 10$\^$-4/-10$\^$-3/ S/cm at 1 wt. % of PANI content. The mechanical property of conducting blend was decreased and TGA thermograms of conducting blends were similar to that of PANI. It had been checked that the flatness of coating layers of conducting blends decreased with increasing conducting components. It was also found that the morphology of blends was setting closer to that of PANI at higher conducting component contents.

Artificial Control of ZnO Nanorods via Manipulation of ZnO Nanoparticle Seeds (산화아연 나노핵의 조작을 통한 산화아연 나노로드의 제어)

  • Shin, Kyung-Sik;Lee, Sam-Dong;Kim, Sang-Woo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.399-399
    • /
    • 2008
  • Synthesis and characterization of ZnO structure such as nanowires, nanorods, nanotube, nanowall, etc. have been studied to multifunctional application such as optical, nanoscale electronic and chemical devices because it has a room-temperature wide band gap of 3.37eV, large exiton binding energy(60meV) and various properties. Various synthesis methods including chemical vapor deposition (CVD), physical vapor deposition, electrochemical deposition, micro-emulsion, and hydrothermal approach have been reported to fabricate various kinds of ZnO nanostructures. But some of these synthesis methods are expensive and difficult of mass production. Wet chemical method has several advantage such as simple process, mass production, low temperature process, and low cost. In the present work, ZnO nanorods are deposited on ITO/glass substrate by simple wet chemical method. The process is perfomed by two steps. One-step is deposition of ZnO seeds and two-step is growth of ZnO nanorods on substrates. In order to form ZnO seeds on substrates, mixture solution of Zn acetate and Methanol was prepared.(one-step) Seed layers were deposited for control of morpholgy of ZnO seed layers by spin coating process because ZnO seeds is deposited uniformly by centrifugal force of spin coating. The seed-deposited samples were pre-annealed for 30min at $180^{\circ}C$ to enhance adhesion and crystallinnity of ZnO seed layer on substrate. Vertically well-aligned ZnO nanorods were grown by the "dipping-and-holding" process of the substrates into the mixture solution consisting of the mixture solution of DI water, Zinc nitrate and hexamethylenetetramine for 4 hours at $90^{\circ}C$.(two-step) It was found that density and morphology of ZnO nanorods were controlled by manipulation of ZnO seeds through rpm of spin coating. The morphology, crystallinity, optical properties of the grown ZnO nanostructures were carried out by field-emission scanning electron microscopy, high-resolution electron microscopy, photoluminescence, respectively. We are convinced that this method is complementing problems of main techniques of existing reports.

  • PDF

An Experimental Study of In-Mold Coating of Automotive Armrests (자동차 암레스트의 인몰드코팅에 관한 실험적 연구)

  • Park, Jong Rak;Lee, Ho Sang
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.7
    • /
    • pp.687-692
    • /
    • 2015
  • A mold design for in-mold coating was developed to achieve simultaneous coating and injection molding of an automotive armrest. The developed mold includes one core and two cavities which are composed of a substrate cavity and a coating cavity. The core was attached to a movable plate and two cavities were mounted on a plate sliding in a stationary plate. In a two-step process, the part was first injection molded and subsequently, with the aid of a sliding table, was transferred to a second cavity. The materials used were PC/ABS for substrate and two-component polyurethane for coating. The experiments were conducted by changing the flow rate to investigate mixing characteristics. As the flow rate increased, the mixing improved. Additionally, the bubbles appeared over the substrate surface decreased with an increase of the weight of injected coating material.

Low-Loss Multimode Waveguides Using Organic-Inorganic Hybrid Materials

  • Yoon, Keun-Byoung
    • Macromolecular Research
    • /
    • v.12 no.3
    • /
    • pp.290-292
    • /
    • 2004
  • Multimode channel waveguides were fabricated using a direct UV patterning technology from thick films deposited by the one-step dip-coating of an organic/inorganic hybrid material (ORMOCER(equation omitted). The core size of the covered ridge waveguide was 43${\times}$51 $\mu\textrm{m}$$^2$; the waveguides can be readily prepared for multimode applications by direct UV patterning. The waveguides exhibited smooth surface profiles and a low optical loss of 0.07 ㏈/cm at the most important wavelength (850nm) used for optical interconnects.

Indium Tin Oxide (ITO) Coatings Fabricated using Nanoparticle Slurry and Sol

  • Cheong, Deock-Soo;Yun, Dong-Hun;Kim, Dong-Hwan;Han, Kyoung-R.
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.6
    • /
    • pp.516-519
    • /
    • 2011
  • Indium tin oxide (ITO) coatings were made using an ITO slurry and an ITO sol. This was achieved by dispersing nanosized ITO powder in a mixed solvent without any dispersant and developing an adhesive ITO sol from indium acetate and tin tetrachloride in a mixture of DMF and n-butanol. Coating was carried out in one step by spin coating an ITO slurry, which was then followed by an ITO sol over it. Here, the sol penetrates into the nano ITO particle layers to make them adhere to each other as well as to a glass substrate. This is then followed by sintering at 500$^{\circ}C$ for 1 h to produce a uniform film consisting of ITO particles of about 50 nm and 10 nm. ITO films were obtained with sheet resistances from 450 to 1500 ohm/${\Box}$ by varying spin speed and concentration. Transmittance is higher than 90% at 550 nm.

The Development of Partial Model for Thermo-Mechanical Stress Analyses of Part with Coated Layer under Contact Load (접촉하중을 받는 코팅층이 있는 부재의 응력해석을 위한 부분 모델 방법의 개발)

  • Kwon, Young-Doo;Kim, Seock-Sam;Goo, Nam-Seo;Park, Jung-Gyu
    • Tribology and Lubricants
    • /
    • v.18 no.3
    • /
    • pp.194-203
    • /
    • 2002
  • This paper is the first step fur thermo-mechanical stress analyses of part with coated layer under contact load. A lot of coated material is applied in many structures to endure severe situation, like thermal stresses, high temperature gradients, irradiation, impacts by microscopic meteorites, and so on. In this part we are going to apply the FEM to analyze space parts with a coated layer subjected to a contact load thermo-mechanically. Coating layer is very thin in comparision with the structure, therefore it should take more times and behaviors to analyze whole model. In these reason we develop the FEM method of analyzing part with coated layer under contact load using partial model. Steady state temperature distribution of the part is obtained first, and then we apply quasi-static external load on the part. To obtain the final stage of solution, we compute the total solution, and by subtracting the thermal strain from the total ones we get the mechanical strains to compute stresses of the parts. In using the FEM, one has to discretize the model into many sub-domain, finite elements. The method is consisited of two steps. First step is to analyze the whole model with rather coarse meshes. Second step we cut a small region near the loading point, and analyze with very fine meshes. This method is allowable by the Saint-Venant's principle. And then, we finally shall check the therma1 load on the stresses of the space part with coating layer with or without substrate cracks. Then, we predict the actual behaviors of the part used in space.

One step facile synthesis of Au nanoparticle-cyclized polyacrylonitrile composite films and their use in organic nano-floating gate memory applications

  • Jang, Seok-Jae;Jo, Se-Bin;Jo, Hae-Na;Lee, Sang-A;Bae, Su-Gang;Lee, Sang-Hyeon;Hwang, Jun-Yeon;Jo, Han-Ik;Wang, Geon-Uk;Kim, Tae-Uk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.307.2-307.2
    • /
    • 2016
  • In this study, we synthesized Au nanoparticles (AuNPs) in polyacrylonitrile (PAN) thin films using a simple annealing process in the solid phase. The synthetic conditions were systematically controlled and optimized by varying the concentration of the Au salt solution and the annealing temperature. X-ray photoelectron spectroscopy (XPS) confirmed their chemical state, and transmission electron microscopy (TEM) verified the successful synthesis, size, and density of AuNPs. Au nanoparticles were generated from the thermal decomposition of the Au salt and stabilized during the cyclization of the PAN matrix. For actual device applications, previous synthetic techniques have required the synthesis of AuNPs in a liquid phase and an additional process to form the thin film layer, such as spin-coating, dip-coating, Langmuir-Blodgett, or high vacuum deposition. In contrast, our one-step synthesis could produce gold nanoparticles from the Au salt contained in a solid matrix with an easy heat treatment. The PAN:AuNPs composite was used as the charge trap layer of an organic nano-floating gate memory (ONFGM). The memory devices exhibited a high on/off ratio (over $10^6$), large hysteresis windows (76.7 V), and a stable endurance performance (>3000 cycles), indicating that our stabilized PAN:AuNPs composite film is a potential charge trap medium for next generation organic nano-floating gate memory transistors.

  • PDF

PMMA Coated BaF2:Er3+ Nanoparticles via a Novel One-Step Reverse-Emulsion Polymerization Process

  • Lian, Hongzhou;Fu, Lianshe;Andre, Paulo S.;Lin, Jun
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.8
    • /
    • pp.2451-2454
    • /
    • 2013
  • Poly(methyl methacrylate) coated $BaF_2:Er^{3+}$ nanoparticles were prepared via a novel reverse-emulsion polymerization process using methyl methacrylate as continuous phase and water as dispersed phase. Preparation and coating of $BaF_2:Er^{3+}$ particles were processed in a single step. The resulting polymeric composites show the characteristic $Er^{3+}$ luminescence at excitation of 980 nm and may have potential applications in amplified optical networks.

The Fabrication of PVA Polymer Coated on the Surface of B4C Nanocomposite by High Energy Ball Mill (고에너지볼밀을 이용한 PVA 고분자가 표면 코팅된 B4C 나노복합재 제조)

  • Uhm, Young-Rang;Kim, Jae-Woo;Jung, Jin-Woo;Rhee, Chang-Kyu
    • Journal of Powder Materials
    • /
    • v.16 no.2
    • /
    • pp.110-114
    • /
    • 2009
  • Mechanical coating process was applied to form 89 %-hydrolyzed poly vinyl alcohol (PVA) onto boron carbide ($B_4C$) nanopowder using one step high energy ball mill method. The polymer layer coated on the surface of B4C was changed to glass-like phase. The average particle size of core/shell structured $B_4C$/PVA was about 50 nm. The core/shell structured $B_4C$/PVA was formed by dry milling. However, the hydrolyzed PVA of $98{\sim}99%$ with high glass transition temperature ($T_g$) was rarely coated on the powder. The $T_g$ of polymer materials was one of keys for guest polymer coating on to the host powder by solvent free milling.

Syngas and Hydrogen Production from $CeO_2/ZrO_2$ coated Foam Devices under Simulated Solar Radiation (다공성 폼에 코팅된 $CeO_2/ZrO_2$ 를 이용한 고온 태양열 합성가스 및 수소 생산 연구)

  • Jang, Jong-Tak;Yoon, Ki-June;Han, Gui-Young
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.260-266
    • /
    • 2012
  • Syngas and hydrogen from the $CeO_2/ZrO_2$ coated foam devices were investigated under simulated solar radiation. The $CeO_2/ZrO_2$ coated SiC, Ni and Cu foam device were prepared using drop-coating method. Syngas production step was performed at $900^{\circ}C$, and hydrogen production process was performed for ten repeated cycles to compare the CeO2 conversion in syngas production step, $H_2$ yield in hydrogen production step and cycle reproducibility. The produced syngas had the $H_2$/CO ratio of 2, which was suitable for methanol synthesis or Fischer-Tropsch synthesis process. In addition, syngas and hydrogen production process is one of the promising chemical pathway for storage and transportation of solar heat by converting solar energy to chemical energy. After ten cycles of redox reaction, the $CeO_2/ZrO_2$ was analyzed using XRD pattern and SEM image in order to characterize the physical and chemical change of metal oxide at the high temperature.

  • PDF