• Title/Summary/Keyword: One-dimensional Performance Model

검색결과 373건 처리시간 0.026초

Underwater striling engine design with modified one-dimensional model

  • Li, Daijin;Qin, Kan;Luo, Kai
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제7권3호
    • /
    • pp.526-539
    • /
    • 2015
  • Stirling engines are regarded as an efficient and promising power system for underwater devices. Currently, many researches on one-dimensional model is used to evaluate thermodynamic performance of Stirling engine, but in which there are still some aspects which cannot be modeled with proper mathematical models such as mechanical loss or auxiliary power. In this paper, a four-cylinder double-acting Stirling engine for Unmanned Underwater Vehicles (UUVs) is discussed. And a one-dimensional model incorporated with empirical equations of mechanical loss and auxiliary power obtained from experiments is derived while referring to the Stirling engine computer model of National Aeronautics and Space Administration (NASA). The P-40 Stirling engine with sufficient testing results from NASA is utilized to validate the accuracy of this one-dimensional model. It shows that the maximum error of output power of theoretical analysis results is less than 18% over testing results, and the maximum error of input power is no more than 9%. Finally, a Stirling engine for UUVs is designed with Schmidt analysis method and the modified one-dimensional model, and the results indicate this designed engine is capable of showing desired output power.

심야전력이용 냉방시스템용 캡슐형 빙축열조에 대한 1차원 모델 축방냉 성능 시뮬레이션 (Performance Simulation of One-Dimensional Ice Storage Tank Model for Refrigeration System Using Night Electricity)

  • 이경호;주용진;최병윤
    • 한국에너지공학회:학술대회논문집
    • /
    • 한국에너지공학회 1999년도 춘계 학술발표회 논문집
    • /
    • pp.193-196
    • /
    • 1999
  • This paper describes one dimensional transient modeling of encapsulated ice storage tank and its experimental validation. This model simulates the performance of tile tank for charge and discharge process with brine mass flow operating conditions.

  • PDF

작동 조건 변화에 대한 토크 컨버터의 성능 특성 분석 (An Investigation on the Torque Converter Characteristics at Various Operating Conditions)

  • 장욱진;이진원;임원식;박영일;이장무
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.678-683
    • /
    • 2000
  • The one-dimensional performance model of a torque converter has been widely used to analyze and predict the performance and dynamic behavior of a torque converter. But this model doesn't include the information of the operating fluid properties. Therefore, to precisely predict dynamic performance of a torque converter, the effect of operating conditions must be considered through experimental coefficients such as friction loss coefficient and shock loss coefficient. And these coefficients cannot be achieved without experiments or internal flow analysis. In this study, the effects of varying material properties of operating fluid according to various operating temperatures are clarified with flow analysis of a torque converter. And these results are verified by comparing with those of performance experiment.

  • PDF

Model-Ship Correlation Study on the Powering Performance for a Large Container Carrier

  • Hwangbo, S.M.;Go, S.C.
    • Journal of Ship and Ocean Technology
    • /
    • 제5권4호
    • /
    • pp.44-50
    • /
    • 2001
  • Large container carriers are suffering from lack of knowledge on reliable correlation allowances between model tests and full-scale trials, especially at fully loaded condition, Careful full-scale sea trial with a full loading of containers both in holds and on decks was carried out to clarify it. Model test results were analyzed by different methods but with the same measuring data to figure out appropriated correlations factors for each analysis methods, Even if it is no doubt that model test technique is one of the most reliable tool to predict full scale powering performance, its assumptions and simplifications which have been applied on the course of data manipulation and analysis need a feedback from sea trial data for a fine tuning, so called correlation factor. It can be stated that the best correlation allowances at fully loaded condition for both 2-dimensional and 3-dimensional analysis methods are fecund through the careful sea trial results and relevant study on the large size container carriers.

  • PDF

1차원 유동 네트워크 모델 및 다공성매질 모델을 이용한 판형 열교환기의 수치적 연구 (A Numerical Study on Plate-Type Heat Exchanger Using One-Dimensional Flow Network Model and Porous-Media Model)

  • 박재현;김민성;민준기;하만영
    • 설비공학논문집
    • /
    • 제28권1호
    • /
    • pp.21-28
    • /
    • 2016
  • A typical heat exchanger, found in many industrial sites, is made up of a large number of unitary cells, which causes difficulties when carrying out full-scale three-dimensional numerical simulations of the heat exchanger to analyze the aero-thermal performance. In the present study, a three-dimensional numerical study using a porous media model was carried out to evaluate the performance of the heat exchanger modelled in two different ways : full-scale and simplified. The pressure drop in the air side and gas side along with the overall heat transfer rate were calculated using a porous media model and the results were then compared to results obtained with a one-dimensional flow network model. The comparison between the results for two different geometries obtained using a porous media model and a one-dimensional flow network model shows good agreement between the simplified geometry and the one-dimensional flow network model. The full-scale geometry shows reasonable differences caused by the geometry such as sudden expansion and contraction.

Comparison of Database Models for Developing a Pavement Performance Analysis System

  • Choi Jae-ho
    • 한국건설관리학회논문집
    • /
    • 제5권4호
    • /
    • pp.79-86
    • /
    • 2004
  • One of the most difficult tasks in pavement management information systems is establishing the links between performance measures of a structure and the design and construction inputs. In-situ pavement performance can be considered a response variable to many project input variables, such as design, construction, and traffic loading effects. If we are to fully understand the component of pavement performance and specify the inputs through design and construction specifications to achieve that performance we must develop quantitative relationship between input and response variables through a scientific, fully integrated Pavement Performance Analysis System (PPAS). Hence, the objective of this study is to design a database model required for developing an effective database template that will allow analysis of pavement performance measures based on design and construction information linked by location. In order to select the most appropriate database model, a conceptual database model (Entity Relationship Model) and dimensional model, which is believed to be the most effective modeling technique for data warehouse project, are designed and compared. It is believed that other state highway agencies could adopt the proposed design strategy for implementing a PPAS at the discretion of the state highway agencies.

대면적 셀 고분자 막전해질 연료전지의 열관리를 위한 2 차원 수치 해석 모델 (Two Dimensional Numerical Model for Thermal Management of Proton Exchange Membrane Fuel Cell with Large Active Area)

  • 유상석;이영덕;안국영
    • 대한기계학회논문집B
    • /
    • 제32권5호
    • /
    • pp.359-366
    • /
    • 2008
  • A two-dimensional thermal model of proton exchange membrane fuel cell with large active area is developed to investigate the performance of fuel cell with large active area over various thermal management conditions. The core sub-models of the two-dimensional thermal model are one-dimensional agglomerate structure electrochemical reaction model, one-dimensional water transport model, and a two-dimensional heat transfer model. Prior to carrying out the simulation, this study is contributed to set up the operating temperature of the fuel cell with large active area which is a maximum temperature inside the fuel cell considering durability of membrane electrolyte. The simulation results show that the operating temperature of the fuel cell and temperature distribution inside the fuel cell can affect significantly the total net power at extreme conditions. Results also show that the parasitic losses of balance of plant component should be precisely controlled to produce the maximum system power with minimum parasitic loss of thermal management system.

계층적 셀 구조를 갖는 이동 통신 시스템의 큐잉 모델 (A Queueing Model for Mobile Communication Systems with Hierarchical Cell Structure)

  • 김기완
    • 한국시뮬레이션학회논문지
    • /
    • 제7권2호
    • /
    • pp.63-78
    • /
    • 1998
  • The hierarchical cell structure consists of the macrocell and microcells to increase the system capacity and to achieve broad coverage. The hierarchical cell structure provides services for users in different mobility. In this paper, an analytical queueing model in mobile networks is proposed for the performance evaluation of the hierarchical cell structure. The model for networks with the multiple levels can simplify multi-dimensional ones into one-dimensional queueing model. The computational advantage will be growing as the layers are constructed in multiple levels. The computer simulation is provided for validating the proposed analytical model.

  • PDF

Discrete-Layer Model for Prediction of Free Edge Stresses in Laminated Composite Plates

  • Ahn, Jae-Seok;Woo, Kwang-Sung
    • 한국전산구조공학회논문집
    • /
    • 제23권6호
    • /
    • pp.615-626
    • /
    • 2010
  • The discrete-layer model is proposed to analyze the edge-effect problem of laminates under extension and flexure. Based on three-dimensional elasticity theory, the displacement fields of each layer in a laminate have been treated discretely in terms of three displacement components across the thickness. The displacement fields at bottom and top surfaces within a layer are approximated by two-dimensional shape functions. Then two surfaces are connected by one-dimensional high order shape functions. Thus the p-convergent refinement on approximated one- and two-dimensional shape functions can be implemented independently of each other. The quality of present model is mostly determined by polynomial degrees of shape functions for given displacement fields. For nodal modes with physical meaning, the linear Lagrangian polynomials are considered. Additional modes without physical meaning, which are created by increasing nodeless degrees of shape functions, are derived from integrals of Legendre polynomials which have an orthogonality property. Also, it is assumed that mapping functions are linear in the light of shape of laminated plates. The results obtained by this proposed model are compared with those available in literatures. Especially, three-dimensional out-of-plane stresses in the interior and near the free edges are evaluated and convergence performance of the present model is established with the stress results.

Aerodynamic design and optimization of a multi-stage axial flow turbine using a one-dimensional method

  • Xinyang Yin;Hanqiong Wang;Jinguang Yang;Yan Liu;Yang Zhao;Jinhu Yang
    • Advances in aircraft and spacecraft science
    • /
    • 제10권3호
    • /
    • pp.245-256
    • /
    • 2023
  • In order to improve aerodynamic performance of multi-stage axial flow turbines used in aircraft engines, a one-dimensional aerodynamic design and optimization framework is constructed. In the method, flow path is generated by solving mass continuation and energy conservation with loss computed by the Craig & Cox model; Also real gas properties has been taken into consideration. To obtain an optimal result, a multi-objective genetic algorithm is used to optimize the efficiencies and determine values of various design variables; Final design can be selected from obtained Pareto optimal solution sets. A three-stage axial turbine is used to verify the effectiveness of the developed optimization framework, and designs are checked by three-dimensional CFD simulation. Results show that the aerodynamic performance of the optimized turbine has been significantly improved at design point, with the total-to-total efficiency increased by 1.17% and the total-to-static efficiency increased by 1.48%. As for the off-design performance, the optimized one is improved at all working points except those at small mass flow.