• 제목/요약/키워드: One-class classification

검색결과 353건 처리시간 0.023초

가우시안 기반 Hyper-Rectangle 생성을 이용한 효율적 단일 분류기 (An Efficient One Class Classifier Using Gaussian-based Hyper-Rectangle Generation)

  • 김도균;최진영;고정한
    • 산업경영시스템학회지
    • /
    • 제41권2호
    • /
    • pp.56-64
    • /
    • 2018
  • In recent years, imbalanced data is one of the most important and frequent issue for quality control in industrial field. As an example, defect rate has been drastically reduced thanks to highly developed technology and quality management, so that only few defective data can be obtained from production process. Therefore, quality classification should be performed under the condition that one class (defective dataset) is even smaller than the other class (good dataset). However, traditional multi-class classification methods are not appropriate to deal with such an imbalanced dataset, since they classify data from the difference between one class and the others that can hardly be found in imbalanced datasets. Thus, one-class classification that thoroughly learns patterns of target class is more suitable for imbalanced dataset since it only focuses on data in a target class. So far, several one-class classification methods such as one-class support vector machine, neural network and decision tree there have been suggested. One-class support vector machine and neural network can guarantee good classification rate, and decision tree can provide a set of rules that can be clearly interpreted. However, the classifiers obtained from the former two methods consist of complex mathematical functions and cannot be easily understood by users. In case of decision tree, the criterion for rule generation is ambiguous. Therefore, as an alternative, a new one-class classifier using hyper-rectangles was proposed, which performs precise classification compared to other methods and generates rules clearly understood by users as well. In this paper, we suggest an approach for improving the limitations of those previous one-class classification algorithms. Specifically, the suggested approach produces more improved one-class classifier using hyper-rectangles generated by using Gaussian function. The performance of the suggested algorithm is verified by a numerical experiment, which uses several datasets in UCI machine learning repository.

Hyper-Rectangles를 이용한 단일 분류기 설계 (Design of One-Class Classifier Using Hyper-Rectangles)

  • 정인교;최진영
    • 대한산업공학회지
    • /
    • 제41권5호
    • /
    • pp.439-446
    • /
    • 2015
  • Recently, the importance of one-class classification problem is more increasing. However, most of existing algorithms have the limitation on providing the information that effects on the prediction of the target value. Motivated by this remark, in this paper, we suggest an efficient one-class classifier using hyper-rectangles (H-RTGLs) that can be produced from intervals including observations. Specifically, we generate intervals for each feature and integrate them. For generating intervals, we consider two approaches : (i) interval merging and (ii) clustering. We evaluate the performance of the suggested methods by computing classification accuracy using area under the roc curve and compare them with other one-class classification algorithms using four datasets from UCI repository. Since H-RTGLs constructed for a given data set enable classification factors to be visible, we can discern which features effect on the classification result and extract patterns that a data set originally has.

One-class 문서 분류를 위한 가상 부정 예제의 사용 (One-Class Document Classification using Pseudo Negative Examples)

  • 송호진;강인수;나승훈;이종혁
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2005년도 한국컴퓨터종합학술대회 논문집 Vol.32 No.1 (B)
    • /
    • pp.469-471
    • /
    • 2005
  • 문서 분류에서의 one class classification 문제는 오직 하나의 범주를 생성하고 새로운 문서가 주어졌을 때 미리 만들어진 하나의 범주에 속하는가를 판별하는 문제이다. 기존의 여러 범주로 이루어진 분류 문제를 해결할 때와는 달리 one class classification에서는 학습 시에 이미 정해진 하나의 범주와 관련이 있는 문서들만을 사용하여 학습을 수행하기 때문에 범주의 경계를 정하는 것이 매우 어려운 작업이며 또한 분류기의 성능에 있어서도 매우 중요한 요소로 작용하게 된다. 본 논문에서는 기존의 연구에서 one class classification 문제를 해결할 때 관심의 대상이 되는 예제의 일부를 부정 예제로 간주하여 one class문제를 two class문제로 변경시켜 학습을 수행했던 것에서 더 나아가 추가적으로 새로운 가상 부정 예제를 설정하여 학습을 수행하고, SVM을 통하여 범주화 성능을 확인해 보기로 한다.

  • PDF

단일 클래스 분류기법을 이용한 반도체 공정 주기 신호의 이상분류 (One-class Classification based Fault Classification for Semiconductor Process Cyclic Signal)

  • 조민영;백준걸
    • 산업공학
    • /
    • 제25권2호
    • /
    • pp.170-177
    • /
    • 2012
  • Process control is essential to operate the semiconductor process efficiently. This paper consider fault classification of semiconductor based cyclic signal for process control. In general, process signal usually take the different pattern depending on some different cause of fault. If faults can be classified by cause of faults, it could improve the process control through a definite and rapid diagnosis. One of the most important thing is a finding definite diagnosis in fault classification, even-though it is classified several times. This paper proposes the method that one-class classifier classify fault causes as each classes. Hotelling T2 chart, kNNDD(k-Nearest Neighbor Data Description), Distance based Novelty Detection are used to perform the one-class classifier. PCA(Principal Component Analysis) is also used to reduce the data dimension because the length of process signal is too long generally. In experiment, it generates the data based real signal patterns from semiconductor process. The objective of this experiment is to compare between the proposed method and SVM(Support Vector Machine). Most of the experiments' results show that proposed method using Distance based Novelty Detection has a good performance in classification and diagnosis problems.

Fuzzy SVM for Multi-Class Classification

  • 나은영;홍덕헌;황창하
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 한국데이터정보과학회 2003년도 추계학술대회
    • /
    • pp.123-123
    • /
    • 2003
  • More elaborated methods allowing the usage of binary classifiers for the resolution of multi-class classification problems are briefly presented. This way of using FSVC to learn a K-class classification problem consists in choosing the maximum applied to the outputs of K FSVC solving a one-per-class decomposition of the general problem.

  • PDF

빅데이터를 위한 H-RTGL 기반 단일 분류기 분산 처리 프레임워크 설계 (Design of Distributed Processing Framework Based on H-RTGL One-class Classifier for Big Data)

  • 김도균;최진영
    • 품질경영학회지
    • /
    • 제48권4호
    • /
    • pp.553-566
    • /
    • 2020
  • Purpose: The purpose of this study was to design a framework for generating one-class classification algorithm based on Hyper-Rectangle(H-RTGL) in a distributed environment connected by network. Methods: At first, we devised one-class classifier based on H-RTGL which can be performed by distributed computing nodes considering model and data parallelism. Then, we also designed facilitating components for execution of distributed processing. In the end, we validate both effectiveness and efficiency of the classifier obtained from the proposed framework by a numerical experiment using data set obtained from UCI machine learning repository. Results: We designed distributed processing framework capable of one-class classification based on H-RTGL in distributed environment consisting of physically separated computing nodes. It includes components for implementation of model and data parallelism, which enables distributed generation of classifier. From a numerical experiment, we could observe that there was no significant change of classification performance assessed by statistical test and elapsed time was reduced due to application of distributed processing in dataset with considerable size. Conclusion: Based on such result, we can conclude that application of distributed processing for generating classifier can preserve classification performance and it can improve the efficiency of classification algorithms. In addition, we suggested an idea for future research directions of this paper as well as limitation of our work.

Comparison Study of Multi-class Classification Methods

  • Bae, Wha-Soo;Jeon, Gab-Dong;Seok, Kyung-Ha
    • Communications for Statistical Applications and Methods
    • /
    • 제14권2호
    • /
    • pp.377-388
    • /
    • 2007
  • As one of multi-class classification methods, ECOC (Error Correcting Output Coding) method is known to have low classification error rate. This paper aims at suggesting effective multi-class classification method (1) by comparing various encoding methods and decoding methods in ECOC method and (2) by comparing ECOC method and direct classification method. Both SVM (Support Vector Machine) and logistic regression model were used as binary classifiers in comparison.

NIDS의 비정상 행위 탐지를 위한 단일 클래스 분류성능 평가 (Performance Evaluation of One Class Classification to detect anomalies of NIDS)

  • 서재현
    • 한국융합학회논문지
    • /
    • 제9권11호
    • /
    • pp.15-21
    • /
    • 2018
  • 본 논문에서는 단일 클래스만을 학습하여 네트워크 침입탐지 시스템 상에서 새로운 비정상 행위를 탐지하는 것을 목표로 한다. 분류 성능 평가를 위해 KDD CUP 1999 데이터셋을 사용한다. 단일 클래스 분류는 정상 클래스만을 학습하여 공격 클래스를 분류해내는 비지도 학습 방법 중 하나이다. 비지도 학습의 경우에는 학습에 네거티브 인스턴스를 사용하지 않기 때문에 상대적으로 높은 분류 효율을 내는 것이 어렵다. 하지만, 비지도 학습은 라벨이 없는 데이터를 분류하는데 적합한 장점이 있다. 본 연구에서는 서포트벡터머신 기반의 단일 클래스 분류기와 밀도 추정 기반의 단일 클래스 분류기를 사용한 실험을 통해 기존에 없던 새로운 공격에 대한 탐지를 한다. 밀도 추정 기반의 분류기를 사용한 실험이 상대적으로 더 좋은 성능을 보였고, 신규 공격에 대해 낮은 FPR을 유지하면서도 약 96%의 탐지율을 보인다.

아이다부스트(Adaboost)와 원형기반함수를 이용한 다중표적 분류 기법 (Multi-target Classification Method Based on Adaboost and Radial Basis Function)

  • 김재협;장경현;이준행;문영식
    • 전자공학회논문지CI
    • /
    • 제47권3호
    • /
    • pp.22-28
    • /
    • 2010
  • 최근 기계학습 분야에서 커널머신을 이용한 대표적 분류기로 Adaboost가 주목받고 있다. Adaboost는 통계적 학습이론에 기반하여 뛰어난 일반화 성능을 보여주며, 다양한 패턴인식 문제에 적용되고 있다. 그러나, Adaboost는 이진 분류기이므로 다중표적 분류 문제에 곧바로 적용할 수 없다. 일반적으로 다중 분류 문제를 해결하는 기법으로 One-Vs-All 기법과 Pair-Wise 기법이 대표적이다. 이러한 두 기법은 다중 분류 문제를 여러 개의 이진 분류 문제로 분할하고, 이들을 다시 종합하여 최종 결정을 내리는 출력코딩이라는 일반적인 기법으로 실제 시스템 구성에 적합할만한 분류 성능을 보여주지 못하는 경우가 대부분이다. 본 논문에서는 이진 분류기인 Adaboost의 다중 분류 확장 방안으로 원형 기반 함수를 약한 분류기로 이용하는 Adaboost 기반 다중표적 분류 기법을 제안한다.

어휘 정보와 구문 패턴에 기반한 단일 클래스 분류 모델 (One-Class Classification Model Based on Lexical Information and Syntactic Patterns)

  • 이현구;최맹식;김학수
    • 정보과학회 논문지
    • /
    • 제42권6호
    • /
    • pp.817-822
    • /
    • 2015
  • 관계 추출은 질의응답 및 지식확장 등에 널리 사용될 수 있는 주요 정보추출 기술이다. 정보추출에 관한 기존 연구들은 관계 범주가 수동으로 부착된 대용량의 학습 데이터를 필요로 하는 지도 학습모델을 기반으로 이루어져 왔다. 최근에는 학습 데이터 구축을 위한 인간의 노력을 줄이기 위해 원거리 감독법이 제안되었다. 그러나 원거리 감독법은 분류 문제를 해결하는데 필수적인 부정 학습 데이터를 수집하기 어렵다는 단점이 있다. 이러한 원거리 감독법의 단점을 극복하기 위해 본 논문에서는 부정 데이터 없이 학습이 가능한 단일 클래스 분류 모델을 제안한다. 입력 데이터로부터 긍정 데이터를 선별하기 위해서 제안 모델은 벡터 공간 상에서 어휘 정보와 구문 패턴에 기반한 유사도 척도를 사용하여 입력 데이터가 내부 범주에 속하는지 그렇지 않은지 판단한다. 실험에서 제안 모델은 대표적인 단일 클래스 분류 모델인 One-class SVM보다 높은 성능(0.6509 F1-점수, 0.6833 정밀도)을 보였다.