• 제목/요약/키워드: One-class SVM

검색결과 73건 처리시간 0.021초

산불발생위험 추정을 위한 위성기반 가뭄지수 개발 (Development of Satellite-based Drought Indices for Assessing Wildfire Risk)

  • 박수민;손보경;임정호;이재세;이병두;권춘근
    • 대한원격탐사학회지
    • /
    • 제35권6_3호
    • /
    • pp.1285-1298
    • /
    • 2019
  • 가뭄은 산불을 일으킬 수 있는 요소 중 하나로, 산불의 빈도 및 피해 면적과 연관성이 있다. 특히, 우리나라는 가뭄이 주로 발생하는 건조한 봄과 가을에 산불이 많이 발생하고, 그 중 일부는 강풍을 동반하여 대형산불로 번지는 경향을 보인다. 따라서 본 연구에서는 우리나라를 대상으로 산불발생 및 면적과 가뭄 변수의 관련성을 파악하고, 우리나라에 적합한 가뭄 변수를 이용하여 산불발생위험 추정을 위한 위성기반의 가뭄지수를 개발하였다. 사용한 가뭄 변수는 다운스케일링(downscaling)한 고해상도의 토양수분, Normalized Different Water Index(NDWI), Normalized Multi-band Drought Index(NMDI), Normalized Different Drought Index(NDDI), Temperature Condition Index(TCI), Precipitation Condition Index(PCI), Vegetation Condition Index(VCI)이며, 경험적 가중 선형조합(Weighted Linear Combination) 및 One-class SVM을 통해 지수 개발을 하였다. 2013년부터 2017년 기간 동안의 변수를 이용하여 상관성 분석을 통해 대부분의 가뭄 변수가 산불 발생에 유의미한 결과를 보임을 확인했으며, 특히 토양수분과 NDWI, PCI가 우리나라 산불과 상관성을 보였다(88 % 이상 일치함). 개발된 지수를 2018년 산불 발생 건에 대해 적용한 결과, 다섯 가지의 선형조합 중에서 토양수분과 NDWI의 조합이 시 공간적으로 적합한 것으로 나타났으며, One-class SVM은 대형산불에 적합한 것으로 나타났다.

A Multi-Objective TRIBES/OC-SVM Approach for the Extraction of Areas of Interest from Satellite Images

  • Benhabib, Wafaa;Fizazi, Hadria
    • Journal of Information Processing Systems
    • /
    • 제13권2호
    • /
    • pp.321-339
    • /
    • 2017
  • In this work, we are interested in the extraction of areas of interest from satellite images by introducing a MO-TRIBES/OC-SVM approach. The One-Class Support Vector Machine (OC-SVM) is based on the estimation of a support that includes training data. It identifies areas of interest without including other classes from the scene. We propose generating optimal training data using the Multi-Objective TRIBES (MO-TRIBES) to improve the performances of the OC-SVM. The MO-TRIBES is a parameter-free optimization technique that manages the search space in tribes composed of agents. It makes different behavioral and structural adaptations to minimize the false positive and false negative rates of the OC-SVM. We have applied our proposed approach for the extraction of earthquakes and urban areas. The experimental results and comparisons with different state-of-the-art classifiers confirm the efficiency and the robustness of the proposed approach.

어휘 정보와 구문 패턴에 기반한 단일 클래스 분류 모델 (One-Class Classification Model Based on Lexical Information and Syntactic Patterns)

  • 이현구;최맹식;김학수
    • 정보과학회 논문지
    • /
    • 제42권6호
    • /
    • pp.817-822
    • /
    • 2015
  • 관계 추출은 질의응답 및 지식확장 등에 널리 사용될 수 있는 주요 정보추출 기술이다. 정보추출에 관한 기존 연구들은 관계 범주가 수동으로 부착된 대용량의 학습 데이터를 필요로 하는 지도 학습모델을 기반으로 이루어져 왔다. 최근에는 학습 데이터 구축을 위한 인간의 노력을 줄이기 위해 원거리 감독법이 제안되었다. 그러나 원거리 감독법은 분류 문제를 해결하는데 필수적인 부정 학습 데이터를 수집하기 어렵다는 단점이 있다. 이러한 원거리 감독법의 단점을 극복하기 위해 본 논문에서는 부정 데이터 없이 학습이 가능한 단일 클래스 분류 모델을 제안한다. 입력 데이터로부터 긍정 데이터를 선별하기 위해서 제안 모델은 벡터 공간 상에서 어휘 정보와 구문 패턴에 기반한 유사도 척도를 사용하여 입력 데이터가 내부 범주에 속하는지 그렇지 않은지 판단한다. 실험에서 제안 모델은 대표적인 단일 클래스 분류 모델인 One-class SVM보다 높은 성능(0.6509 F1-점수, 0.6833 정밀도)을 보였다.

Fuzzy SVM for Multi-Class Classification

  • 나은영;홍덕헌;황창하
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 한국데이터정보과학회 2003년도 추계학술대회
    • /
    • pp.123-123
    • /
    • 2003
  • More elaborated methods allowing the usage of binary classifiers for the resolution of multi-class classification problems are briefly presented. This way of using FSVC to learn a K-class classification problem consists in choosing the maximum applied to the outputs of K FSVC solving a one-per-class decomposition of the general problem.

  • PDF

One-class SVM 알고리즘을 이용한 안드로이드 API의 이상치 탐지 시스템 (Android API anomaly Detection System Using One-class SVM algorithm)

  • 이지은;최유준;신용태
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 춘계학술발표대회
    • /
    • pp.562-564
    • /
    • 2023
  • 스마트폰 발전으로 인한 SNS(Social Network Service), 웹 검색 및 활용 등 편리함과 유용성을 가져다 주었지만 안드로이드 APP의 개방성으로 인하여 프로그램의 원칙적 특성을 악용한 취약점이 발생하고 있다. 이를 대응하는 해결방안으로 API에 대한 요청 데이터를 모듈을 통하여 로그 값을 수집한다. 수집된 데이터는 로그 값을 시간을 기준으로 라벨링하여 이상치 탐지 알고리즘인 OCSVM의 이상치 평균으로 사용하여 실시간 데이터 영향을 받는 하이퍼파라미터 C 와 r 값을 Grid Search 기법을 통해 조정함으로써 최적의 파라미터 값을 찾는 시스템을 제안한다.

Early warning of hazard for pipelines by acoustic recognition using principal component analysis and one-class support vector machines

  • Wan, Chunfeng;Mita, Akira
    • Smart Structures and Systems
    • /
    • 제6권4호
    • /
    • pp.405-421
    • /
    • 2010
  • This paper proposes a method for early warning of hazard for pipelines. Many pipelines transport dangerous contents so that any damage incurred might lead to catastrophic consequences. However, most of these damages are usually a result of surrounding third-party activities, mainly the constructions. In order to prevent accidents and disasters, detection of potential hazards from third-party activities is indispensable. This paper focuses on recognizing the running of construction machines because they indicate the activity of the constructions. Acoustic information is applied for the recognition and a novel pipeline monitoring approach is proposed. Principal Component Analysis (PCA) is applied. The obtained Eigenvalues are regarded as the special signature and thus used for building feature vectors. One-class Support Vector Machine (SVM) is used for the classifier. The denoising ability of PCA can make it robust to noise interference, while the powerful classifying ability of SVM can provide good recognition results. Some related issues such as standardization are also studied and discussed. On-site experiments are conducted and results prove the effectiveness of the proposed early warning method. Thus the possible hazards can be prevented and the integrity of pipelines can be ensured.

Half-Against-Half Multi-class SVM Classify Physiological Response-based Emotion Recognition

  • ;고광은;박승민;심귀보
    • 한국지능시스템학회논문지
    • /
    • 제23권3호
    • /
    • pp.262-267
    • /
    • 2013
  • The recognition of human emotional state is one of the most important components for efficient human-human and human- computer interaction. In this paper, four emotions such as fear, disgust, joy, and neutral was a main problem of classifying emotion recognition and an approach of visual-stimuli for eliciting emotion based on physiological signals of skin conductance (SC), skin temperature (SKT), and blood volume pulse (BVP) was used to design the experiment. In order to reach the goal of solving this problem, half-against-half (HAH) multi-class support vector machine (SVM) with Gaussian radial basis function (RBF) kernel was proposed showing the effective techniques to improve the accuracy rate of emotion classification. The experimental results proved that the proposed was an efficient method for solving the emotion recognition problems with the accuracy rate of 90% of neutral, 86.67% of joy, 85% of disgust, and 80% of fear.

다중 클래스 SVM과 주석 코드 배열을 이용한 의료 영상 자동 주석 생성 (Medical Image Automatic Annotation Using Multi-class SVM and Annotation Code Array)

  • 박기희;고병철;남재열
    • 정보처리학회논문지B
    • /
    • 제16B권4호
    • /
    • pp.281-288
    • /
    • 2009
  • 본 논문은 의료 영상 중 X-ray 영상에 대한 효과적인 분류와 자동 주석 생성을 위한 방법을 제안한다. X-ray 영상은 일반 자연 영상과는 다르게 영상 내에 중요한 의미를 가지고 있는 관심 영역과 어두운 단색의 배경으로 구성된 특징을 가지고 있음으로 본 논문에서는, 영상의 중요영역에서 해리스 코너 검출기를 이용한 색 구조 기술자(H-CSD)로 색 특징을 추출하고, 질감 특징을 위해 경계선 히스토그램 기술자(EHD)를 사용하였다. 추출된 두 개의 특징 벡터들은 각각 다중 클래스 Support Vector Machine에 적용되어 20개의 카테고리 중 하나로 영상을 분류한다. 마지막으로, 영상은 미리 정의된 카테고리들의 계층적인 관계와 우선 순위에 기반하여 주석 코드 배열(Annotation Code Array)을 부여 받고 이를 이용하여 다수의 최적 키워드를 얻으며 갖게 된다. 실험에서는 제안한 주석 생성방법을 관련 연구 방법과 비교하여 성능이 개선 되었음을 보여주고 있다.

Comparison Study of Multi-class Classification Methods

  • Bae, Wha-Soo;Jeon, Gab-Dong;Seok, Kyung-Ha
    • Communications for Statistical Applications and Methods
    • /
    • 제14권2호
    • /
    • pp.377-388
    • /
    • 2007
  • As one of multi-class classification methods, ECOC (Error Correcting Output Coding) method is known to have low classification error rate. This paper aims at suggesting effective multi-class classification method (1) by comparing various encoding methods and decoding methods in ECOC method and (2) by comparing ECOC method and direct classification method. Both SVM (Support Vector Machine) and logistic regression model were used as binary classifiers in comparison.

이상 탐지 분석에서 알려지지 않는 공격을 식별하기 위한 이산 웨이블릿 변환 적용 연구 (Application of Discrete Wavelet Transforms to Identify Unknown Attacks in Anomaly Detection Analysis)

  • 김동욱;신건윤;윤지영;김상수;한명묵
    • 인터넷정보학회논문지
    • /
    • 제22권3호
    • /
    • pp.45-52
    • /
    • 2021
  • 사이버 보안의 침입탐지 시스템에서 알려지지 않는 공격을 식별하기 위한 많은 연구가 이루어지고 있지만, 그 중에서도 이상치를 기반으로 하는 연구가 주목받고 있다. 이에 따라 우리는 알려지지 않는 공격에 대한 범주를 정의하여 이상치를 식별한다. 알려지지 않는 공격은 2가지 범주로 조사하였는데, 첫째는 변종 공격을 생성하는 사항이 있고, 두 번째는 새로운 유형으로 분류하는 연구로 나누었다. 우리는 변종 공격을 생성하는 연구 범주에서 변종과 같이 유사 데이터를 식별할 수 있는 이상치 연구를 수행하였다. 침입탐지 시스템에서 이상치를 식별하는 큰 문제는 정상행동과 공격행동이 같은 공간을 공유하는 것이다. 이를 위해 우리는 이산 웨이블릿 변환으로 정상과 공격에 대해 명확한 유형으로 나눌 수 있는 기법을 적용하고 이상치를 탐지하였다. 결과로 우리는 이산 웨이블릿 변환으로 재구성된 데이터에서 One-Class SVM을 통한 이상치를 식별 할 수 있음을 확인하였다.