• 제목/요약/키워드: One-class SVM

검색결과 73건 처리시간 0.113초

PoMEN 기반의 Latent One-Class SVM (PoMEN based Latent One-Class SVM)

  • 이창기
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2012년도 제24회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.8-11
    • /
    • 2012
  • One-class SVM은 데이터가 존재하는 영역을 추출하고, 이 영역을 서포트 벡터로 표현하며 표현된 영역 밖의 데이터들은 아웃라이어(outlier)로 간주된다. 본 논문에서는 데이터 포인트마다 숨겨진 변수(hidden variable) 혹은 토픽이 있다고 가정하고, 이를 반영하기 위해 PoMEN에 기반한 Latent One-class SVM을 제안한다. 실험결과 Latent One-class SVM이 대부분의 구간에서 One-class SVM 보다 성능이 높았으며, 특히 높은 정확율을 요구하는 경우에 더욱 효과적임을 알 수 있었다.

  • PDF

퍼지 원 클래스 서포트 벡터 머신 (Fuzzy One Class Support Vector Machine)

  • 김기주;최영식
    • 인터넷정보학회논문지
    • /
    • 제6권3호
    • /
    • pp.159-170
    • /
    • 2005
  • OC-SVM(One Class Support Vector Machine)은 주어진 전체 데이터의 분포를 측정하는 대신에. 데이터 분포의 서포트(support)를 측정하는 기술로서 주어진 데이터를 가장 잘 설명할 수 있는 최적의 서포트 벡터(support vector)를 구하는 기술이다. OC-SVM은 데이터 분포의 표현에 아주 뛰어난 접근 방법이지만, 사람의 주관적인 중요도를 반영하는 것은 힘들다. 본 논문에서는 각 데이터에 퍼지 맴버쉽(fuzzy membership)을 적용하여 기존의 OC-SVM에 사용자의 주관적인 중요도를 표현할 수 있는 FOC-SVM(Fuzzy One class Support Vector Machine)을 유도 하였다. FOC-SVM은 데이터들을 동등하게 다루는 것이 아니라, 데이터 객체의 중요도에 따라 데이터를 다룬다. 즉, 덜 중요한 데이터의 특징 벡터는 OC-SVM의 처리과정에 덜 기여하도록 하기 위하여, 객체의 중요도에 따라 특징 벡터의 크기를 조정하였다. 이를 증명하기 위하여 가상의 데이터를 가지고 실험을 하였고, 실험 결과는 예측된 결과를 보여 주었다.

  • PDF

중요도 기반 퍼지 원 클래스 서포트 벡터 머신을 이용한 비디오 요약 기술 (Video Summarization Using Importance-based Fuzzy One-Class Support Vector Machine)

  • 김기주;최영식
    • 인터넷정보학회논문지
    • /
    • 제12권5호
    • /
    • pp.87-100
    • /
    • 2011
  • 본 논문에서는 비디오 요약을 시각적으로 특징이 있고 주관적으로 중요한 비디오 세그먼트 집합을 구하는 새로운 요약 방식을 기술한다. 시각적으로 특징이 있는 데이터 포인트를 찾기 위해 novelty detection으로 잘 알려져 있는 OC-SVM(One-Class Support Vector Machine)을 사용할 수 있다. 그러나 OC-SVM의 처리과정에 비디오 세그먼트에 대한 사용자의 주관적인 중요도를 반영하기는 어렵다. OC-SVM의 처리과정에 사용자의 주관적 중요성을 반영하기 위해서, 본 논문에서는 OC-SVM의 퍼지 버전을 유도한다. IFOC-SVM(Importance-based Fuzzy One-Class Support Vector Machine)은 비디오 세그먼트의 중요도에 따라 각 데이터 포인트에 가중치를 부여하고 데이터 분포의 서포트를 측정한다. 이때, 구해진 서포트 벡터는 비 오 세그먼트의 중요도와 시각적 특징 관점에서 비디오의 내용을 축약하여 표현한다. 제안된 알고리즘의 성능을 증명하기 위하여 가상의 데이터들과 다양한 종류의 비디오들을 가지고 실험하였다. 실험 결과는 제안하는 방법의 성능이 다른 비디오 요약의 성능보다 우수함을 보여주었다.

Support Vector Machines을 이용한 다중 클래스 문제 해결 (Solving Multi-class Problem using Support Vector Machines)

  • 고재필
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제32권12호
    • /
    • pp.1260-1270
    • /
    • 2005
  • 최근 기계학습 분야에서 커널머신을 이용한 대표적 학습기로 Support Vector Machines (SVM)이 주목 받고 있다. SVM은 통계적 학습이론에 기반하여 뛰어난 일반화 성능을 보여주며, 다양한 패턴인식 문제에 적용되고 있다. 그러나. SVM은 이진 분류기이므로 일반적인 다중 클래스 문제에 곧바로 적용할 수 없다. SVM을 다중 클래스 문제의 하나인 얼굴인식에 도입하기 위한 방법으로는, One-Per-Class와 All-Pairs가 대표적이다. 상기 두 방법은 다중 클래스 문제를 여러 개의 이진 클래스 문제로 분할하고, 이들을 다시 종합하여 최종 결정을 내리는 출력코딩이라는 일반적인 방법에 속한다. 본 논문에서는 이진 분류기인 SVM의 다중 클래스 분류기 확장 방안으로 출력코딩 방법론을 설명한다. 또한 출력코딩 방법론의 대표적인 이론적 기반인 ECOC(Ewor-Correcting Output Codes)를 근간으로 하는 새로운 출력코딩 방법들을 제안하고, 얼굴인식 실험을 통해 SVM을 기반 분류기로 사용할 경우의, 출력코딩 방법의 특성을 비교$\cdot$분석한다.

고차원 데이터에서 One-class SVM과 Spectral Clustering을 이용한 이진 예측 이상치 탐지 방법 (A Binary Prediction Method for Outlier Detection using One-class SVM and Spectral Clustering in High Dimensional Data)

  • 박정희
    • 한국멀티미디어학회논문지
    • /
    • 제25권6호
    • /
    • pp.886-893
    • /
    • 2022
  • Outlier detection refers to the task of detecting data that deviate significantly from the normal data distribution. Most outlier detection methods compute an outlier score which indicates the degree to which a data sample deviates from normal. However, setting a threshold for an outlier score to determine if a data sample is outlier or normal is not trivial. In this paper, we propose a binary prediction method for outlier detection based on spectral clustering and one-class SVM ensemble. Given training data consisting of normal data samples, a clustering method is performed to find clusters in the training data, and the ensemble of one-class SVM models trained on each cluster finds the boundaries of the normal data. We show how to obtain a threshold for transforming outlier scores computed from the ensemble of one-class SVM models into binary predictive values. Experimental results with high dimensional text data show that the proposed method can be effectively applied to high dimensional data, especially when the normal training data consists of different shapes and densities of clusters.

다중-클래스 SVM 기반 야간 차량 검출 (Night-time Vehicle Detection Based On Multi-class SVM)

  • 임효진;이희용;박주현;정호열
    • 대한임베디드공학회논문지
    • /
    • 제10권5호
    • /
    • pp.325-333
    • /
    • 2015
  • Vision based night-time vehicle detection has been an emerging research field in various advanced driver assistance systems(ADAS) and automotive vehicle as well as automatic head-lamp control. In this paper, we propose night-time vehicle detection method based on multi-class support vector machine(SVM) that consists of thresholding, labeling, feature extraction, and multi-class SVM. Vehicle light candidate blobs are extracted by local mean based thresholding following by labeling process. Seven geometric and stochastic features are extracted from each candidate through the feature extraction step. Each candidate blob is classified into vehicle light or not by multi-class SVM. Four different multi-class SVM including one-against-all(OAA), one-against-one(OAO), top-down tree structured and bottom-up tree structured SVM classifiers are implemented and evaluated in terms of vehicle detection performances. Through the simulations tested on road video sequences, we prove that top-down tree structured and bottom-up tree structured SVM have relatively better performances than the others.

One-Class 서포트 벡터 머신을 이용한 레벨 셋 트리 생성 (Creating Level Set Trees Using One-Class Support Vector Machines)

  • 이계민
    • 정보과학회 논문지
    • /
    • 제42권1호
    • /
    • pp.86-92
    • /
    • 2015
  • 레벨 셋 트리는 다차원에 정의된 확률 밀도 함수를 표현하는데 유용하다. 복잡한 데이터의 구조를 트리 형태로 시각화하여 데이터의 형태를 효율적으로 파악할 수 있으며 클러스터링 분석에 효과적으로 이용할 수 있다. 본 논문에서는 미지의 확률 밀도 함수에서 생성된 데이터 샘플로부터 레벨 셋 트리를 생성하는 알고리즘을 제안한다. 제안된 알고리즘은 레벨을 0에서부터 무한대로 증가시키며 밀도 함수의 각 레벨 셋을 추정하고, 이로부터 레벨 셋 트리를 생성한다. 이를 위해 본 논문에서는 one-class 서포트 벡터 머신 (OC-SVM)을 이용하여 직접적으로 레벨 셋을 추정한다. 이때 다양한 레벨 값에 대해 OC-SVM 학습을 반복해야 하는데, OC-SVM 솔루션 path 알고리즘을 통해 빠른 시간 안에 모든 레벨값에 해당하는 레벨 셋를 추정할 수 있다.

Multi-Class SVM+MTL for the Prediction of Corporate Credit Rating with Structured Data

  • Ren, Gang;Hong, Taeho;Park, YoungKi
    • Asia pacific journal of information systems
    • /
    • 제25권3호
    • /
    • pp.579-596
    • /
    • 2015
  • Many studies have focused on the prediction of corporate credit rating using various data mining techniques. One of the most frequently used algorithms is support vector machines (SVM), and recently, novel techniques such as SVM+ and SVM+MTL have emerged. This paper intends to show the applicability of such new techniques to multi-classification and corporate credit rating and compare them with conventional SVM regarding prediction performance. We solve multi-class SVM+ and SVM+MTL problems by constructing several binary classifiers. Furthermore, to demonstrate the robustness and outstanding performance of SVM+MTL algorithm over other techniques, we utilized four typical multi-class processing methods in our experiments. The results show that SVM+MTL outperforms both conventional SVM and novel SVM+ in predicting corporate credit rating. This study contributes to the literature by showing the applicability of new techniques such as SVM+ and SVM+MTL and the outperformance of SVM+MTL over conventional techniques. Thus, this study enriches solving techniques for addressing multi-class problems such as corporate credit rating prediction.

RBF 커널과 다중 클래스 SVM을 이용한 생리적 반응 기반 감정 인식 기술 (Physiological Responses-Based Emotion Recognition Using Multi-Class SVM with RBF Kernel)

  • 마카라 완니;고광은;박승민;심귀보
    • 제어로봇시스템학회논문지
    • /
    • 제19권4호
    • /
    • pp.364-371
    • /
    • 2013
  • Emotion Recognition is one of the important part to develop in human-human and human computer interaction. In this paper, we have focused on the performance of multi-class SVM (Support Vector Machine) with Gaussian RFB (Radial Basis function) kernel, which has been used to solve the problem of emotion recognition from physiological signals and to improve the accuracy of emotion recognition. The experimental paradigm for data acquisition, visual-stimuli of IAPS (International Affective Picture System) are used to induce emotional states, such as fear, disgust, joy, and neutral for each subject. The raw signals of acquisited data are splitted in the trial from each session to pre-process the data. The mean value and standard deviation are employed to extract the data for feature extraction and preparing in the next step of classification. The experimental results are proving that the proposed approach of multi-class SVM with Gaussian RBF kernel with OVO (One-Versus-One) method provided the successful performance, accuracies of classification, which has been performed over these four emotions.

A Hierarchical Clustering Method Based on SVM for Real-time Gas Mixture Classification

  • Kim, Guk-Hee;Kim, Young-Wung;Lee, Sang-Jin;Jeon, Gi-Joon
    • 한국지능시스템학회논문지
    • /
    • 제20권5호
    • /
    • pp.716-721
    • /
    • 2010
  • In this work we address the use of support vector machine (SVM) in the multi-class gas classification system. The objective is to classify single gases and their mixture with a semiconductor-type electronic nose. The SVM has some typical multi-class classification models; One vs. One (OVO) and One vs. All (OVA). However, studies on those models show weaknesses on calculation time, decision time and the reject region. We propose a hierarchical clustering method (HCM) based on the SVM for real-time gas mixture classification. Experimental results show that the proposed method has better performance than the typical multi-class systems based on the SVM, and that the proposed method can classify single gases and their mixture easily and fast in the embedded system compared with BP-MLP and Fuzzy ARTMAP.