• 제목/요약/키워드: One dimensional measurements

검색결과 249건 처리시간 0.029초

지면반사효과를 이용한 폭발 소음원의 위치 추정 정밀도 향상법 (An Accuracy Improvement Method on Acoustic Source Localization Using Ground Reflection Effect)

  • 고영주;최동훈;이재형;최종수;하재현;나태흠
    • 한국소음진동공학회논문집
    • /
    • 제26권1호
    • /
    • pp.69-74
    • /
    • 2016
  • A technique for improving estimation accuracy is introduced in order to locate the impact position of artillery shell during the weapon scoring test. Study on localization of impacts using acoustic measurement has been conducted and the usability of sensor array is verified with experiments. When the blast occurs above the ground in the firing range, the acoustic sensor above the ground can measure the directly propagated sound with the ground-reflected one. In this study, a method for reducing estimation error by using the reflection signal measurements based on the time difference of arrival method. Considering the reflection sound works as same as placing a virtual sensor symmetrically through the ground. This idea enables a virtual three-dimensional array configuration with a two-dimensional plane array above the ground as such. The time difference between the direct and the reflected propagations can be estimated using cepstrum analysis. Performance test has been made in the simulation experiment in the football size area.

이동 통신 단말기용 초소형 3차원 안테나 제작 (Fabrication of a Subminiature 3 Dimensional Antenna for the Mobile Phone Handset)

  • 홍민기;손태호
    • 한국전자파학회논문지
    • /
    • 제19권12호
    • /
    • pp.1455-1461
    • /
    • 2008
  • 휴대폰 내 수납 공간 체적이 1 cc 정도 되는 초소형 안테나를 제작하였다. 기본적인 형태는 IFA(Inverted F Antenna)이며, 전류 상쇄가 적도록 설계함으로써 안테나 효율을 높여 작은 체적에도 불구하고 높은 이득을 갖도록 하였다. 멀티 밴드의 구현에서 낮은 주파수 대역의 짧은 길이에 대한 보상은 헤릭스를 적용하였으며, 높은 주파수 대역을 위하여 3차원 구조의 패턴을 만들어 넣었다. 제작은 보드를 세트로 한 GSM/DCS 대역용 1 cc 안테나와 GSM/USPCS 대역 휴대폰 세트용 1.5 cc 안테나를 제작하고 제반 특성을 측정하였다. 각 안테나에 대한 측정 결과, 각 대역에서 평균 이득이 각각 $-3.46{\sim}-0.45\;dBi$$-4.80{\sim}-3.29\;dBi$로 매우 양호한 특성을 얻었다.

3차원 맥영상 검사로 살펴본 천왕보심단이 심혈관계에 미치는 영향 (Hemodynamic effects of Chunwangbosim-dan - A 3-dimensional radial pulse tonometry device study)

  • 강희정;권영상;구태훈;김경철
    • 대한융합한의학회지
    • /
    • 제6권1호
    • /
    • pp.5-20
    • /
    • 2024
  • Objectives: This study was aimed to evaluate the hemodynamic feasibility using pulse parameters as a way to establish safe dose guidelines for Chunwangbosim-dan, and to provide a foundation for developing evidence-based guidelines for clinical use. Methods: Forty-one volunteers were recruited to participate in a study examining the changes in pulse wave characteristics following the ingestion of Chunwangbosim-dan, over a period of 2 weeks, and pulse wave measurements were taken before and after the administration. Pulse wave parameters were measured in this study using a 3-dimensional radial pulse tonometry device(DMP-Lifeplus). In addition, questionnaire, blood pressure, temperature, and body composition were also measured as secondary measures. Results: Fifteen minutes after administration of Chunwangbosim-dan, the non-adverse event group(non-AE) exhibited a statistically significant increase in several power and pressure-related parameters, including h1, h3, h4, h5, SA, PA and PW, while the adverse event group(AE) showed a trend of decreasing stroke volume and increasing Systemic Vascular Resistance Index(SVRI) and applied pressure. After 2 weeks of administration, non-adverse event group(non-AE) exhibited significant changes in standard deviation of pulse rate and HRV_LH ratio. Notably, there are significant differences between AE group and non-AE group in h4/h1, w/t, applied pressure, SV and pulse rate. Conclusion: These findings suggest that pulse parameters may be a useful way to establish safe dosing guidelines for Chunwangbosim-dan. Further research is needed to confirm these results and to develop evidence-based guidelines for clinical use.

  • PDF

유동분배판에 의한 원통 다관형 열교환기의 성능 특성에 관한 수치해석적 연구(I): 유동특성 (NUMERICAL STUDY ON THE PERFORMANCE CHARACTERISTICS OF SHELL AND TUBE HEAT EXCHANGER BY FLOW DISTRIBUTORS : PART(I) FLOW CHARACTERISTICS)

  • 박영민;정희택;김형범
    • 한국전산유체공학회지
    • /
    • 제19권3호
    • /
    • pp.20-23
    • /
    • 2014
  • The flow pattern inside the inlet chamber of the tube side is one of the key parameters influencing on the performances of the shell-and-tube type of heat exchangers(STHE). In order to improve the flow distribution, the baffle shaped as the porous plate is installed in the inlet chambers. In the present study, numerical simulation has been performed to investigate the flow features of the tube side of the STHE in sense of the hydraulic performances. The flow fields have been analysed by the three-dimensional Navier-Stokes solvers with the proper turbulent models. Computational domain is ranged in the whole of the tube side of the STHE. The numerical results showed that the presence of the baffles improves the redistribution of the flow injecting to the tube bundels. The good agreements of the numerical results with the experimental results of PIV measurements have been shown for the validation of the numerical methods adopted in the present papers.

Constraints on dark radiation from cosmological probes

  • Rossi, Graziano;Yeche, Christophe;Palanque-Delabrouille, Nathalie;Lesgourgues, Julien
    • 천문학회보
    • /
    • 제40권1호
    • /
    • pp.44.1-44.1
    • /
    • 2015
  • We present joint constraints on the number of effective neutrino species $N_{eff}$ and the sum of neutrino masses ${\Sigma}m_{\nu}$, based on a technique which exploits the full information contained in the one-dimensional Lyman-${\alpha}$ forest flux power spectrum, complemented by additional cosmological probes. In particular, we obtain $N_{eff}=2.91{\pm}0.22$ (95% CL) and ${\Sigma}m_{\nu}$ < 0.15 eV (95% CL) when we combine BOSS Lyman-${\alpha}$ forest data with CMB (Planck+ACT+SPT+WMAP polarization) measurements, and $N_{eff}=2.88{\pm}0.20$ (95% CL) and ${Sigma}m_{\nu}$ < 0.14 eV (95% CL) when we further add baryon acoustic oscillations. Our results tend to favor the normal hierarchy scenario for the masses of the active neutrino species, provide strong evidence for the Cosmic Neutrino Background from $N_{eff}{\approx}3$($N_{eff}=0$ is rejected at more than $14{\sigma}$), and rule out the possibility of a sterile neutrino thermalized with active neutrinos (i.e., $N_{eff}=4$) - or more generally any decoupled relativistic relic with $${\Delta}N_{eff}{\sim_=}1$$ - at a significance of over $5{\sigma}$, the strongest bound to date, implying that there is no need for exotic neutrino physics in the concordance ${\Lambda}CDM$ model.

  • PDF

직접메탄올 연료전지의 농도 및 온도변화에 따른 실험적 검증 (Experimental Validation of a Direct Methanol Fuel Cells(DMFCs) model with a Operating Temperatures and Methanol Feed Concentrations)

  • 강경문;고요한;이기용;주현철
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.125.2-125.2
    • /
    • 2010
  • In this paper, both theoretical and experimental investigations have been performed to examine the effects of key operating parameters on the cell performance of a DMFCs (i.e., methanol feed concentration and operating temperature). For experiment, the membrane electrode assemblies (MEAs) were prepared using a conventional MEA fabrication method based on a catalyst coated electrode (CCE) and tested under various cell temperatures and methanol feed concentrations. The polarization curve measurements were conducted using in-house-made $25cm^2$ MEAs. The voltage-current density data were collected under three different cell temperatures ($50^{\circ}C$, $60^{\circ}C$, and $70^{\circ}C$) and four different methanol feed concentrations (1 M, 2 M, 3 M, and 4 M). The experimental data indicate that the measured I-V curves are significantly altered, depending on these conditions. On the other hand, previously developed one-dimensional, two-phase DMFC model is simulated under the same operating conditions used in the experiments. The model predictions compare well with the experimental data over a wide range of these operating conditions, which demonstrates the validity and accuracy of the present DMFC model. Furthermore, both simulation and experimental results exhibit the strong influences of methanol and water crossover rates through the membrane on DMFC performance and I-V curve characteristics.

  • PDF

Role of edge patterning and metal contact for extremely low contact resistance on graphene

  • Jo, Seo-Hyeon;Park, Hyung-Youl;Park, Jin-Hong
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.294.2-294.2
    • /
    • 2016
  • Graphene, a sigle atomic layered structure of graphite, has drawn many scientific interests for attractive future electronics and optoelectronics beyond silicon-based technology because of its robust physical, optical, and electrical properties. But high metal-graphene contact resistance prevents the successful integration of high speed graphene devices and circuits, although pristine graphene is known to have a novel carrier transport property. Meanwhile, in the recently reported metal-graphene contact studies, there are many attempts to reduce the metal-graphene contact resistance, such as doping and one-dimensional edge contact. However, there is a lack of quantitative analysis of the edge contact scheme through variously designed patterns with different metal contact. We first investigate the effets of edge contact (metal-graphene interface) on the contact resistance in terms of edge pattern design through patterning (photolithography + plasma etching) and electral measurements. Where the contact resistance is determined using the transfer length method (TLM). Finally, we research the role of metal-kind (Palladium, Copper, and Tianium) on the contact resistance through the edge-contacted devices, eventually minimizing contact resistance down to approximately $23{\Omega}{\cdot}{\mu}m$ at room temperature (approximately $19{\Omega}{\cdot}{\mu}m$ at 100 K).

  • PDF

Theoretical Studies of the Electrical Discharge Characteristics of Sulfur Hexafluoride

  • Radmilovic-Radjenovic, Marija;Radjenovic, Branislav
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권1호
    • /
    • pp.288-294
    • /
    • 2017
  • This paper contains results of the theoretical studies of the electrical breakdown properties in sulfur hexafluoride. Since the strong interaction of high-energy electrons with the polyatomic sulfur hexafluoride molecule causes their rapid deceleration to the lower energy of electron capture and dissociative attachment, the breakdown is only possible at relatively high field strengths. From the breakdown voltage curves, the effective yields that characterize secondary electron productions have been estimated. Values of the effective yields are found to be more consistent if they are derived from the experimentally determined values of the ionization coefficient and the breakdown voltages. In addition, simulations were performed using an one-dimensional Particle-in-cell/Monte Carlo collision code. The obtained simulation results agree well with the available experimental data with an error margin of less than 10% over a wide range of pressures and the gap sizes. The differences between measurements and calculations can be attributed to the differences between simulation and experimental conditions. Simulation results are also compared with the theoretical predictions obtained by using expression that describes linear dependence of the breakdown voltage in sulfur hexafluoride on the pressure and the gap size product.

상세한 기상관측 자료를 이용한 1997년 서울.수도권 고농도 오존 사례의 모델링 (Modeling the 1997 High-Ozone Episode in the Greater Seoul Area with Densely-Distributed Meteorological Observations)

  • 김진영;김영성
    • 한국대기환경학회지
    • /
    • 제17권1호
    • /
    • pp.1-17
    • /
    • 2001
  • The high-ozone episode in the Greater Seoul Area for the period of July 27 to August 1 1997 was modeled by the CIT(California Institute of Technology) three-dimensional photochemical model. Emission data were prepared by scaling the NIER(1994) data through and optimization method using VOC measurements in August 1997 and EKMA(Empirical Kinetic Modeling Approach). Two sets of meteorological data were prepared by the diagnostic routine. a part of the CIT model : one only utilized observations from the surface weather stations and the other also utilized observations from the automatic weather stations that were more densely distributed than those from the surface weather stations. The results showed that utilizing observations from the automatic weather stations could represent fine variations in the sind field such as those caused by topography. A better wind field gave better peak ozones and a more reasonable spatial distribution of ozone concentrations. Nevertheless, there were still many differences between predictions and observations particularly for primary pollutant such as NOx and CO. This was probably due to the inaccuracy of emission data that could not resolve both temporal and spatial variations.

  • PDF

Stereoscopic PIV 기법을 이용한 선박용 프로펠러 후류의 3차원 속도장 측정 (Three Component Velocity Field Measurements of Turbulent Wake behind a Marine Propeller Using a Stereoscopic PIV Technique)

  • 이상준;백부근;윤정환
    • 대한기계학회논문집B
    • /
    • 제27권12호
    • /
    • pp.1716-1723
    • /
    • 2003
  • A stereoscopic PIV(Particle Image Velocimetry) technique was employed to measure the 3 dimensional flow structure of turbulent wake behind a marine propeller with 5 blades. The out-of-plane velocity component was determined using two CCD cameras with the angular displacement configuration. Four hundred instantaneous velocity fields were measured for each of four different blade phases and ensemble averaged to investigate the spatial evolution of the propeller wake in the near-wake region from the trailing edge to one propeller diameter(D) downstream. The phase-averaged velocity fields show the potential wake and the viscous wake developed along the blade surfaces. Tip vortices were generated periodically and the slipstream contraction occurs in the near-wake region. The out-of-plane velocity component and strain rate have large values at the locations of tip and trailing vortices. As the flow goes downstream, the turbulence intensity, the strength of tip vortices and the magnitude of out-of-plane velocity component at trailing vortices are decreased due to viscous dissipation, turbulence diffusion and blade-to-blade interaction.