• Title/Summary/Keyword: Oncogene expression

Search Result 185, Processing Time 0.031 seconds

Application of Transposable Elements as Molecular-marker for Cancer Diagnosis (암 진단 분자 마커로서 이동성 유전인자의 응용)

  • Kim, Hyemin;Gim, Jeong-An;Woo, Hyojeong;Hong, Jeonghyeon;Kim, Jinyeop;Kim, Heui-Soo
    • Journal of Life Science
    • /
    • v.27 no.10
    • /
    • pp.1215-1224
    • /
    • 2017
  • Until now, various oncogenic pathways were idenfied. The accumulation of DNA mutation induces genomic instability in the cell, and it makes cancer. The development of bioinformatics and genomics, to find the precise and reliable biomarker is available. This biomarker could be applied the early-dignosis, prediction and convalescence of cancer. Recently, Transposable elements (TEs) have been attracted as the regulator of genes, because they occupy a half of human genome, and the cause of various diseases. TEs induce DNA mutation, as well as the regulation of gene expression, that makes to cancer development. So, we confirmed the relationship between TEs and colon cancer, and provided the clue for colon cancer biomarker. First, we confirmed long interspersed nuclear element-1 (LINE-1), Alu, and long terminal repeats (LTRs) and their relationship to colon cancer. Because these elements have large composition and enormous effect to the human genome. Interestingly, colon cancer specific patterns were detected, such as the hypomethylation of LINE-1, LINE-1 insertion in the APC gene, hypo- or hypermethylation of Alu, and isoform derived from LTR insertion. Moreover, hypomethylation of LINE-1 in proto-oncogene is used as the biomarker of colon cancer metastasis, and MLH1 mutation induced by Alu is detected in familial or hereditary colon cancer. The genes, effected by TEs, were analyzed their expression patterns by in silico analysis. Then, we provided tissue- and gender-specific expression patterns. This information can provide reliable cancer biomarker, and apply to prediction and diagnosis of colon cancer.

Low Frequency Noise Induces Stress Responses in the Rat (흰쥐에서 저주파소음에 의한 스트레스 반응)

  • Choi, Woong-Ki;Lee, Kyu-Sop;Joung, Hye-Young;Lee, Young-Chang;Sohn, Jin-Hun;Lee, Bae-Hwan;Pyun, Kwang-Ho;Shim, In-Sop
    • Science of Emotion and Sensibility
    • /
    • v.10 no.3
    • /
    • pp.411-418
    • /
    • 2007
  • Exposure to low frequency noise(LFN) can lead to vibroacoustic diseases(VADs), which include a systemic disease with lesions in a broad spectrum of organs and a psychiatric condition. It is known that VAD is an established risk factor for the development of many psychological conditions in humans and rodents, including major depression and anxiety disorder. The present study investigated the effects of LFN on neuronal stress responses in the rat brain. The neuronal expression of the proto-oncogene c-fos in the paraventricular nucleus(PVN) of the hypothalamus and tyrosine hydroxylase(TH) in the LC was observed. The immunocytochemical detection of the Fos protein and TH has been used as a marker of neuronal activation in response to stress. In addition, corticosterone concentration was evaluated by using an enzyme-linked immunosorbent assay(ELISA). The LFN groups were exposed to 32.5Hz and 125Hz of noise(4hr/day for 2days). The numbers of c-fos and TH-immunoreactive cells in the PVN and LC were significantly increased in the LFN groups(32.5Hz and 125Hz) compared to the normal group. Corticosterone concentration in plasma was also increased in LFN groups. The present results demonstrated that exposure with LFN produced a pronounced increase in expression of c-Fos and TH in stress-relevant brain areas. These results suggest that the neural characteristics involved in LFN are similar to those activated by typical processive stressors. These results also suggest that the central and peripheral activations by LFN may be related to LFN-related negative behavioral dysfunctions such as VADs.

  • PDF

Expression of EGFR in Non-small Cell Lung Cancer and its Effects on Survival (비소세포 폐암에서 EGFR의 발현률과 생존률에 미치는 영향)

  • Kim, Hak-Ryul;Jeong, Eun-Taik
    • Tuberculosis and Respiratory Diseases
    • /
    • v.44 no.6
    • /
    • pp.1285-1295
    • /
    • 1997
  • Background : EGFR is one of the initial step in signal transduction pathway about multistep carcinogenesis. It is homologous to oncogene erbB-2 and is the receptor for EGF and TGF alpha. EGFR has important role in the growth and differentiation of tumor cells. So, EGFR in non-small cell lung cancer was examined to search for possible evidence as clinical prognostic factor. Methods : To investigate the role of EGFR in lung cancer, the author performed immunohistochemical stain of EGFR on 57 resected primary non-small cell lung cancer specimens. And the author analyzed the correlation between EGFR expression, clinical parameters, Sand $G_1$ phase fraction and survival. Results : 1) EGFR were detected in 56% of total 57 patients (according to histologic type, squamous cancer 50%, adenocarcinoma 63%, large cell cancer 75%) (according to TNM stage, stage I 64%, stage II 38%, stage III 55%) (according to cellular differentiation, well 50%, moderately 52%, poorly 65%). All differences were insignificant 2) Using the flow cytometric analysis, mean S-phase fraction of EGFR (+) and (-) group were 22.3(${\pm}10.5$)%. 18.0(${\pm}10.9$)% (p>0.05), mean $G_1$-phase fraction of EGFR (+) and (-) group were 68.4(${\pm}11.6$)%, 71.1(${\pm}12.8$)%, (p>0.05) 3) Two-year survival rate of EGFR (+) and (-) group were 53%, 84%, median survival time of EGFR (+) and (-) group were 26, 53 months. (p<0.05, Kaplan-Meier, generalized Wilcox) Conclusion : EGFR immunostaining may be a simple and useful method for survival prediction in non-small cell lung cancer.

  • PDF

Smad6 Gene and Suppression of Radiation-Induced Apoptosis by Genistein in K562 Cells (K562 세포주에서 Genistein에 의해 억제되는 Radiation-induced Apoptosis의 조절 유전자)

  • Jeong, Soo-Jin;Jin, Young-Hee;Yoo, Yeo-Jin;Do, Chang-Ho;Jeong, Min-Ho;Huh, Gi-Yeong;Bae, Hye-Ran;Yang, Kwang-Mo;Moon, Chang-Woo;Oh, Sin-Geun;Hur, Won-Joo;Lee, Hyung-Sik
    • Radiation Oncology Journal
    • /
    • v.19 no.3
    • /
    • pp.245-251
    • /
    • 2001
  • Prupose : The genes involved on the suppression or radiation-induced apoptosis by genistein in K562 leukemia cell line was investigated. Materials and methods : K562 cells in exponential growth phase were irradiated with a linear accelerator at room temperature. For X-ray irradiation and drug treatment, cultures were prepared at $2\times10^5\;cells/mL$. The cells were irradiated with 10 Gy (Clinac 1800C, Varian, USA), Stock solutions of herbimycin A (HMA, Calbiochem, UK) and genistein (Calbiochem, UK) were prepared in dimethylsulfoxide (DMSO, Sigma, UK). After incubation at $37^{\circ}C$ for 24 h, PCR-select cDNA subtractive hybridization, dot hybridization, DNA sequencing and Northern hybridization were examined. Results : Smad6 gene was identified from the differentially expressed genes in K562 cells incubated with genistein which had been selected by PCR-select cDNA subtractive hybridization. The mRNA expression of Smad6 in K562 cells incubated with genistein was also higher than control group by Northern hybridization analysis. Conclusion : We have shown that Smad6 involved on the suppression of radiation-induced apoptosis by genistein in K562 leukemia cell line. It is plausible that the relationship between Smad6 and the suppression of radiation-induced apoptosis is essential for treatment development based on molecular targeting designed to modify radiation-induced apoptosis.

  • PDF

EFFECTS OF HYDROQUINONE ON NEOPLASTIC TRANSFORMATION OF HUMAN EPITHELIAL CELLS IN CULTURE (Hydroquinone이 인체 상피세포의 발암화에 미치는 영향)

  • Sohn, Jung-Hee;Kim, Chin-Soo
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.32 no.3
    • /
    • pp.218-228
    • /
    • 2010
  • Components of dental resin-based restorative materials are reported to leach from the filling materials even after polymerization. Hydroquinone (HQ) is one of the major monomers used in the dental resin and is known as a carcinogen. Thus, carcinogenic risk of HQ leaching from the dental resin becomes a public health concern. The present study attempted to examine the carcinogenic potentials of HQ on the human epithelial cell, which is the target cell origin of the most of oral cancers. Cytotoxicity of HQ was observed above 50${\mu}M$ as measured by LDH assay, indicating a relatively low toxicity of this substance in human epithelial cells. The parameters of neoplastic cellular transformation such as cell saturation density, soft agar colony formation and cell aggregation were analyzed to examine the carcinogenic potential of HQ. The study showed that 2-week exposure of HQ showed the tendency of increase in the saturation density and the significant enhancement of soft agar colony formation at the highest dose, 50 ${\mu}M$ only. It is suggested that HQ has a weak potential of carcinogenicity. When cells were treated with HQ and TPA, a well-known tumor promoter, the parameters of neoplastic cellular transformation was significantly increased. This result indicates that the potential risk of carcinogenicity from HQ is largely dependent upon the presence of promoter. Exposure of 50 ${\mu}M$ HQ increased the time-dependent apoptosis as measured by the ELISA kit. This concentration coincides with a dose of neoplastic transformation, indicating a possible link between apoptosis and HQ-induced cellular transformation. Hydroquinone generated Reactive Oxygen Species (ROS) which was evidenced by the treatment of antioxidants such as trolox and N-acetyl cysteine and the GSH depleting agent, BSO. Antioxidants blocked the generation of ROS and the GSH depleting agent, BSO dramatically increased the ROS production. Since HQ is known to increase ROS production thru activation of transcriptional factor such as c-Myb and Pim-1, it is speculated that ROS generation by HQ plays a role in the activation of oncogene, which may lead to neoplastic transformation. In addition, ROS is involved in the alteration of signal transduction, which regulates the apoptosis in many cellular systems. Thus, ROS-mediated apoptosis may be involved in the HQ-induced carcinogenic processes. Protein kinase C (PKC) is known to play pivotal roles in neoplastic transformation of cells and its high expression is often found in a variety of types of tumors including oral cancer. PKC translocation of PKC-${\alpha}$ was observed following HQ exposure. Altered signaling system may also play a role in the transformation process. Taken together, HQ leached from the dental resin does not pose a significant threat as a cancer causing agent, but its carcinogenic potential can be significantly elevated in the presence of promoter. The mechanism of HQ-induced carcinogenesis involved ROS generation, apoptosis and altered signaling pathway. The present study will provide a valuable data to estimate the potential risk of HQ as a carcinogen and understand mechanism of HQ-induced carcinogenesis in human epithelial cells.