• Title/Summary/Keyword: Onboard decision support system

Search Result 6, Processing Time 0.021 seconds

A study on a ballast optimization algorithm for onboard decision support system (선내탑재 의사결정지원 시스템을 위한 발라스트 최적화 알고리즘에 관한 연구)

  • Shin Sung-Chul
    • Journal of Navigation and Port Research
    • /
    • v.29 no.10 s.106
    • /
    • pp.865-870
    • /
    • 2005
  • Because there are only a limited number of means of action that are available for the master to pursue in the event of flooding, onboard decision support system has been required. The majority of systems activated during a flooding emergency (such as watertight and semi-watertight doors, bulkhead valves, dewatering pumps etc.) almost exclusively aim to restore a sufficiently high level of subdivision to prevent flooding from spreading through the ship. Even though assuming the flooding scenario is not catastrophic, the use of ballast tanks can be an additional and very effective tool to ensure both prevention of flooding spreading and also improve ship stability. This paper describes an optimization algorithm devised to choose the set of ballast tanks that should be filled in order to achieve an optimal response to a flooding accident.

A study on a ballast optimization algorithm for onboard decision support system (선내탑재 의사결정지원 시스템을 위한 발라스트 최적화 알고리즘에 관한 연구)

  • Shin Sung-Chul
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2005.10a
    • /
    • pp.75-80
    • /
    • 2005
  • Because there are only a limited number of means of action that are available for the master to pursue in the event of flooding, onboard decision support system has been required The majority of systems activated during a flooding emergency (such as watertight and semi-watertight doors, bulkhead valves, dewatering pumps etc.) almost exclusively aim to restore a sufficiently high level of subdivision to prevent flooding from spreading through the ship. Even though assuming the flooding scenario is not catastrophic, the use of ballast tanks can be an additional and very effective tool to ensure both prevention of flooding spreading and also improve ship stability. This paper describes an optimization algorithm devised to choose the set of ballast tanks that should be filled in order to achieve an optimal response to a flooding accident.

  • PDF

Deep learning neural networks to decide whether to operate the 174K Liquefied Natural Gas Carrier's Gas Combustion Unit

  • Sungrok Kim;Qianfeng Lin;Jooyoung Son
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.11a
    • /
    • pp.383-384
    • /
    • 2022
  • Gas Combustion Unit (GCU) onboard liquefied natural gas carriers handles boil-off to stabilize tank pressure. There are many factors for LNG cargo operators to take into consideration to determine whether to use GCU or not. Gas consumption of main engine and re-liquefied gas through the Partial Re-Liquefaction System (PRS) are good examples of these factors. Human gas operators have decided the operation so far. In this paper, some deep learning neural network models were developed to provide human gas operators with a decision support system. The models consider various factors specially into GCU operation. A deep learning model with Sigmoid activation functions in input layer and hidden layers made the best performance among eight different deep learning models.

  • PDF

Maritime Officers' Strategies for Collision Avoidance in Crossing Situations

  • Hong, Seung Kweon
    • Journal of the Ergonomics Society of Korea
    • /
    • v.36 no.5
    • /
    • pp.525-533
    • /
    • 2017
  • Objective: The aim of this study is to investigate maritime officers' strategies to avoid the ship collision in crossing situations. Background: In a situation where there is a risk of collision between two ships, maritime officers can change the direction and speed of the own-ship to avoid the collision. They have four options to select; adjusting the speed only, the direction only, both the speed and direction at the same time and no action. Research questions were whether the strategy they are using differs according to the shipboard experience of maritime officers and the representation method of ARPA (automatic radar plotting aid) - radar graphic information. Method: Participants were 12. Six of them had more than 3 years of onboard experience, while the others were 4th grade students at Korea Maritime and Ocean University. For each participant, 32 ship encounter situations were provided with ARPA-radar information. 16 situations were presented by the north-up display and 16 situations were presented by the track-up display. Participants were asked to decide how to move the own-ship to avoid the ship collision for each case. Results: Most participants attempted to avoid the collision by adjusting the direction of the ship, representing an average of 22.4 times in 32 judgment trials (about 70%). Participants who did not have experience on board were more likely to control speed and direction at the same time than participants with onboard experience. Participants with onboard experience were more likely to control the direction of the ship only. On the other hand, although the same ARPA Information was provided to the participants, the participants in many cases made different judgments depending on the method of information representation; track-up display and north-up display. It was only 25% that the participants made the same judgment under the same collision situations. Participants with onboard experience did make the same judgment more than participants with no onboard experience. Conclusion: In marine collision situations, maritime officers tend to avoid collisions by adjusting only the direction of their ships, and this tendency is more pronounced among maritime officers with onboard experience. The effect of the method of information representation on their judgment was not significant. Application: The results of this research might help to train maritime officers for safe navigation and to design a collision avoidance support system.

Experimental Results of Ship-To-Ship Lightering Operations Applied Velocity Information GPS

  • Yoo, Yun-Ja;Pedersen, Egil;Kouguchi, Nobuyoshi;Song, Chae-Uk
    • Journal of Navigation and Port Research
    • /
    • v.38 no.6
    • /
    • pp.577-583
    • /
    • 2014
  • A ship-to-ship (STS) lightering operation takes place in order to transfer cargo (e.g. crude oil or petroleum products) between an ocean-going ship and a service ship alongside it. Instrumental measurements to accurately determine the relative speeds and distances during the approach between the vessels would benefit the operational safety and efficiency. A velocity information GPS (VI-GPS) system, which uses the instantaneous velocity measures from carrier-phase Doppler measurement, has been applied in a field observation onboard a service ship (Aframax tanker) approaching a ship-to-be-lightered (VLCC) in open waters. This article proposes to apply VI-GPS as the input sensor to a guidance and decision-support system aiming to provide accurate velocity information to the officer in charge of an STS operation. A method for precise velocity measurement using VI-GPS was described and the measurement results were compared each other with the results of Voyage Data Recorder (VDR) and VI-GPS that showed the concept of a guidance and decision-support system applying VI-GPS with the field test results during STS operations. Also, it turned out that VI-GPS has sufficient accuracy to serve as an input sensor from the field test results.

A Study on Determining the Optimal Replacement Interval of the Rolling Stock Signal System Component based on the Field Data (필드데이터에 의한 철도차량 신호장치 구성품의 최적 교체주기 결정에 관한 연구)

  • Byoung Noh Park;Kyeong Hwa Kim;Jaehoon Kim
    • Journal of the Korean Society of Safety
    • /
    • v.38 no.2
    • /
    • pp.104-111
    • /
    • 2023
  • Rolling stock maintenance, which focuses on preventive maintenance, is typically implemented considering the potential harm that may be inflicted to passengers in the event of failure. The cost of preventive maintenance throughout the life cycle of a rolling stock is 60%-75% of the initial purchase cost. Therefore, ensuring stability and reducing maintenance costs are essential in terms of economy. In particular, private railroad operators must reduce government support budget by effectively utilizing railroad resources and reducing maintenance costs. Accordingly, this study analyzes the reliability characteristics of components using field data. Moreover, it resolves the problem of determining an economical replacement interval considering the timing of scrapping railroad vehicles. The procedure for determining the optimal replacement interval involves five steps. According to the decision model, the optimal replacement interval for the onboard signal device components of the "A" line train is calculated using field data, such as failure data, preventive maintenance cost, and failure maintenance cost. The field data analysis indicates that the mileage meter is 9 years, which is less than the designed durability of 15 years. Furthermore, a life cycle in which the phase signal has few failures is found to be the same as the actual durability of 15 years.