• Title/Summary/Keyword: On-the-machine

Search Result 15,902, Processing Time 0.038 seconds

A study on the Experimental Evaluation for the Cam Profile CNC Grinding Machine using Vibration Signals (진동 신호를 이용한 캠 프로파일 CNC 연삭기의 실험적 평가에 관한 연구)

  • Lee Choon Man;Lim Sang Heon
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.288-293
    • /
    • 2005
  • A earn profile grinding machine is a mandatory machine tool for manufacture of high precision contoured cam. Experimental evaluation of modal analysis is an effective tool to investigate dynamic behavior of a machine. This paper presents the measurement system and experimental investigation on the modal analysis of a grinding machine. The weak part of the machine is found by the experimental evaluation. The results provide structure modification data for good dynamic behaviors. And safety of the machine was confirmed by the modal analysis of modified machine design. Finally, the cam profile grinding machine was successfully developed.

  • PDF

THE RELATIONSHIP BETWEEN PLOT GEOMETRY AND INPUTS REQUIRED FOR FARM MACHINE OPERATION IN KOREA

  • Singh, Gajendra;Ahn, Duck-Hyun
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.139-147
    • /
    • 1993
  • The rapid industrial growth, the consequent shortage of farm labour and increase in their wage level have facilitated more capitalized agricultural mechanization pattern in Korea. The efficiency of capital intensive machine is highly dependent on farm land structure. This paper describes a model explaining the relationship between farmland structure and required inputs for machine operation and to estimate required inputs for machine operation on the national basis for Korea for its paddy production system. The machine cost is closely related to operation area, but the required labour-hours are more related to machine type adopted . From the technology introduction point of view, if capital intensive machine is introduced, less labour-hours are required but machine kW-hours increase rapidly. From the plot geometry point of view, on good geometry plots, machine kW-hour and labour-hour required are less than that on the poor geometry plots. The kW-jhour per hectare of mechani al energy input id better indicator of mechanization level than kW per hectare or number of machine. If the adopted technology is more capital intensive and plot geometry is good, the cost reduction effect is highly significant.

  • PDF

Machine Layout Decision Algorithm for Cell Formation Problem Using Self-Organizing Map (자기조직화 신경망을 이용한 셀 형성 문제의 기계 배치순서 결정 알고리듬)

  • Jeon, Yong-Deok
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.42 no.2
    • /
    • pp.94-103
    • /
    • 2019
  • Self Organizing Map (SOM) is a neural network that is effective in classifying patterns that form the feature map by extracting characteristics of the input data. In this study, we propose an algorithm to determine the cell formation and the machine layout within the cell for the cell formation problem with operation sequence using the SOM. In the proposed algorithm, the output layer of the SOM is a one-dimensional structure, and the SOM is applied to the parts and the machine in two steps. The initial cell is formed when the formed clusters is grouped largely by the utilization of the machine within the cell. At this stage, machine cell are formed. The next step is to create a flow matrix of the all machine that calculates the frequency of consecutive forward movement for the machine. The machine layout order in each machine cell is determined based on this flow matrix so that the machine operation sequence is most reflected. The final step is to optimize the overall machine and parts to increase machine layout efficiency. As a result, the final cell is formed and the machine layout within the cell is determined. The proposed algorithm was tested on well-known cell formation problems with operation sequence shown in previous papers. The proposed algorithm has better performance than the other algorithms.

A Study on Knitting Method of Seamless Knitted Garment Knitting Machine -Focused on Whole Garment Knitting Machine- (무 봉제 완벌 편기의 생산 방식에 관한 연구 -WHOLE GARMENT 편기를 중심으로-)

  • Ki Hee-Sook;Kim Young-Joo;Suh Mi-A
    • The Research Journal of the Costume Culture
    • /
    • v.13 no.2 s.55
    • /
    • pp.189-199
    • /
    • 2005
  • The purposes of this study are to see a manufacturing process on knit by comparison, and to present whole garment knitting machine different from the traditional method of the production by using the whole garment system. The characteristics of each stage were examined through SDS-one, Shimaseiki Design CAD System and the whole garment knitting machine. The whole garment knitting machine as a method of composing a suit of knitting product is a way of making creative knitting fashion, which also can be used as a basic material for the further study on the whole garment knitting machine. Eventually, it is expected that this machine can satisfy the knit wearers' various needs by showing more useful method to knit designers.

  • PDF

Trends of Technology Development of Friction Stir Welding Machine (마찰교반접합장비의 기술개발 동향)

  • Kim, Young-Pyo;Kim, Cheol-Hee;Kim, Young-Gon;Joo, Sung-Min
    • Journal of Welding and Joining
    • /
    • v.34 no.3
    • /
    • pp.1-5
    • /
    • 2016
  • At present, FSW(friction stir welding) process is being considered as an actual way for production of various industrial products. However FSW process involves high temperature and load on the tool during welding. These are make a difference between FSW machine and general machine tools. From this reason, development of FSW machine needs very careful consideration on stiffness of machine structure, spindle and moving axis including machine control system. In this study authors investigate on the trends of technology development of FSW machine in order to share the information for more extension of FSW technology with related researchers and engineers.

A Study on the Development of a High Speed Feeding Type Three-Dimensional Bending Machine (초고속 이송 방식 3차원 Bending Machine 개발에 관한 연구)

  • Lim, Sang-Heon;Lee, Choon-Man
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.11 s.176
    • /
    • pp.91-98
    • /
    • 2005
  • This study has been focused on the development of a high speed feeding type three-dimensional bending machine. It is designed for manufacture of copper pipe for heat exchangers. For the purpose of design of the machine, analysis of bending process, structural analysis and reliability evaluation of the machine by a laser interferometer are carried out. The analysis is carried out by FEM simulation using commercial softwares, DEFORM, MARC and CATIA V5. In addition, the machine has attained high accuracy and repeatability. In order to improve the accuracy of this machine, the maximum speed, positioning accuracy and repeatability of feed are measured by the laser interferometer. The final results of analysis are applied to the design of a high speed feeding type three-dimensional bending machine and the machine is successfully developed.

Fault Detection and Diagnosis based on Fuzzy Algorithm in the Injection Molding Machine Barrel Temperature (사출 성형기 Barrel 온도에 관한 퍼지알고리즘 기반의 고장 검출 및 진단)

  • 김훈모
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.11
    • /
    • pp.958-962
    • /
    • 2003
  • We acquired data of injection molding machine in operation and stored the data in database. We acquired the data of injection molding machine for fault detection and diagnosis (FDD) continuously and estimated the fault results with a fuzzy algorithm. Many of FDD are applied to a huge system, nuclear power plant and a computer numerical control(CNC) machine for processing machinery. But, the research of FDD is rare in injection molding machine compare with computer numerical control machine. We appraise the accuracy of the FDD and the limit of the application to the injection molding machine. We construct the fault detection and diagnosis system based on fuzzy algorithm in the injection molding machine. Data of operating injection molding machine are acquired in order to improve the reliability of detection and diagnosis.

Knowledge-Evolutionary Intelligent Machine Tools - Part 1: Design of Dialogue Module based on Agent Standard Platform in M2M Environment (지식진화형 지능공작기계-Part 1: M2M 환경에서의 Agent 표준 플랫폼 기반 Dialogue Module 설계)

  • Kim Dong-Hoon;Song Jun-Yeob
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.6
    • /
    • pp.600-607
    • /
    • 2006
  • For the effective operation of manufacturing system, FMS(Flexible Manufacturing System) and CIM(Computer Integrated Manufacturing) system are developed. In these systems, a machine tool is the target of integration in last 3 decades. In nowadays, the conventional concept of machine tools is changing to the autonomous manufacturing device based on knowledge-evolution through applying advanced information technology in which open architecture controller, high speed network and internet technology are contained. In this environment, a machine tool is not the target of integration but the subject of cooperation. In the future, a machine tool will be more improved in the form of a knowledge-evolution based device. In order to develop the knowledge-evolution based machine tools, this paper proposes the structure of knowledge evolution in M2M(Machine To Machine) and the scheme of a dialogue agent among agent-based modules such as a sensory module, a dialogue module, and an expert system. The dialogue agent has a role of interfacing with another machine for cooperation. To design the dialogue agent module in M2M environment, FIPA-OS and ping agent based on FIPA-OS are analyzed in this study. Through this, it is expected that the dialogue agent module can be more efficiently designed and the knowledge-evolution based machine tools can be hereafter more easily implemented.

An Intelligent Measuring and inspection System On the Machine Tools (온더머신 지능형 측정 및 검사시스템)

  • 김경돈
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1996.10a
    • /
    • pp.101-106
    • /
    • 1996
  • Interactive Measuring part Program Generating Tools (IMPPGT) realized on the FANUC 15MA using touch trigger probes and interactive macro functions os the CNC were developed for an intelligent measuring and inspection systems on the machine tools. Menu driven measuring and inspection functions of the IMPPGT were studied and implemented on the CNC through the macro executer and ROM writer. In order to automate measurement and inspection procedures in machine shops measuring G Code system was also proposed. Using the developed measuring G Code system on the machine tool untended measurement and inspection operation was able to be realized in FMS lines.

  • PDF

Modeling and Measurement of Geometric Errors for Machining Center using On-Machine Measurement System (기상계측 시스템을 이용한 머시닝센터의 기하오차 모델링 및 오차측정)

  • Lee, Jae-Jong;Yang, Min-Yang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.2 s.95
    • /
    • pp.201-210
    • /
    • 1999
  • One of the major limitations of productivity and quality in metal cutting is the machining accuracy of machine tools. The machining accuracy is affected by geometric and thermal errors of the machine tools. Therefore, a key requirement for improving te machining accuracy and product quality is to reduce the geometric and thermal errors of machine tools. This study models geometric error for error analysis and develops on-machine measurement system by which the volumetric erors are measured. The geometric error is modeled using form shaping function(FSF) which is defined as the mathematical relationship between form shaping motion of machine tool and machined surface. The constant terms included in the error model are found from the measurement results of on-machine measurement system. The developed on-machine measurement system consists of the spherical ball artifact (SBA), the touch probe unit with a star type stylus, the thermal data logger and the personal computer. Experiments, performed with the developed measurement system, show that the system provides a high measuring accuracy, with repeatability of ${\pm}2{\mu}m$ in X, Y and Z directions.

  • PDF