• 제목/요약/키워드: On-the-Fly

검색결과 2,184건 처리시간 0.033초

A Study on Sodium Sulfate Activited the Hydration Properties of Fly Ash-cement Paste (황산염나트륨 자극제를 사용한 플라이 애쉬 혼입 시멘트 페이스트의 초기 수화 특성에 관한 기초적 연구)

  • Wang, Zihao;Sun, Yang;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 한국건축시공학회 2021년도 봄 학술논문 발표대회
    • /
    • pp.129-130
    • /
    • 2021
  • In order to solve the problem of low early-age compressive strength of high volume fly ash concrete. This paper studies the effect of 2% sodium sulfate (Na2SO4) as a chemical activator on the paste with 40% fly ash content and a water-binder ratio of 0.30. The results indicate that the addition of Na2SO4 can effectively improve the early-age compressive strength of the fly ash-cement system, and the strength improvement rate on the first day reached nearly 70%. In addition, calorimetric analysis reveals that the incorporation of Na2SO4 promotes the early hydration of cement and fly ash, increases the cumulative hydration heat and delays the heat peak of the aluminum phase.

  • PDF

Structural performance of concrete containing fly ash based lightweight angular aggregates

  • Pati, Pritam K.;Sahu, Shishir K.
    • Advances in concrete construction
    • /
    • 제13권4호
    • /
    • pp.291-305
    • /
    • 2022
  • The present investigation deals with the production of the innovative lightweight fly ash angular aggregates (FAA) first time in India using local class 'F' fly ash, its characterization, and exploring the potential for its utilization as alternative coarse aggregates in structural concrete applications. Two types of aggregates are manufactured using two different kinds of binders. The manufacturing process involves mixing fly ash, binder, and water, followed by the briquetting process, sintering and crushing them into suitable size aggregates. Tests are conducted on fly ash angular aggregates to measure their physical properties such as crushing value, impact value, specific gravity, water absorption, bulk density, and percentage of voids. Study shows that the physical parameters are significantly enhanced as compared to commercially available fly ash pellets (FAP). The developed FAA are used in concrete vis-à-vis conventional granite aggregates and FAP to determine their compressive, split tensile and flexural strengths. Although being lightweight, the strength parameters for concrete containing FAA are well compared with conventional concrete. This might be due to the high pozzolanic reaction between fly ash angular aggregates and cement paste. Also, RCC beams are cast and the load-deflection behaviour and ultimate load carrying capacity signify that FAA can be suitably used for RCC construction. Hence, the utilization of fly ash as angular aggregates can reduce the dead load of the structure and at the same time serves as a solution for fly ash disposal and mineral depletion problem.

Analysis and Design for Ripple Generation Network Circuit in Constant-on-Time-Controlled Fly-Buck Converter (COT 제어 플라이벅 컨버터를 위한 전압 리플 보상회로의 분석 및 설계)

  • Cho, Younghoon;Jang, Paul
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • 제27권2호
    • /
    • pp.106-117
    • /
    • 2022
  • Multiple output converters can be utilized when various output voltages are required in applications. Recently, one of the multiple output converters called fly-buck has been proposed, and has attracted attention due to the advantage that multiple output can be easily obtained with a simple structure. When constant on-time (COT) control is applied, the output ripple voltage must be treated carefully for control stability and voltage regulation characteristics in consideration of the inherent energy transfer characteristics of the fly-buck converter. This study analyzes the operation principle of the fly-buck converter with a ripple generation network and presents the design guideline for the improved output voltage regulation. Validity of the analysis and design guideline is verified using a 5 W prototype of the COT controlled fly-buck converter with a ripple generation network for telecommunication auxiliary power supply.

Synthesis of $\beta$-Sialon Powder from Fly Ash (Fly Ash를 이용한$\beta$-Sialon 분말합성)

  • 최희숙;노재승;서동수
    • Journal of the Korean Ceramic Society
    • /
    • 제33권8호
    • /
    • pp.871-876
    • /
    • 1996
  • It is believed that fly ash could be suitable for preparing the sialon by carbothermal reduction method because the total amount of SiO2 and Al2O3 is above 80% and the unburned residual carbon is above 5% within the fly ash. The effects of reaction temperature (1350, 1400, 145$0^{\circ}C$) reaction time (1, 5, 10 hours) and the amount of carbon additions (C/SiO2=2, 3, 4 mole) on the $\beta$-sialon synthesis were obserbed, It was conformed that $\beta$-sialon (Z=2.15~2.18) was formed as major phase under all of the synthesis conditions and small amount of Si2ON2 SiC, AlN and Si3N4 was formed depending on the synthesis conditions. FeSix intermetal-lic compound was formed above 140$0^{\circ}C$ reaction temperature due to the large amount of iron oxides within the raw fly ash.

  • PDF

Electrostatic Beneficiation of Coal Fly Ash Utilizing Triboelectric Charging with Subsequent Electrostatic Separation

  • Lee, Jae-Keun;Kim, Seong-Chan
    • Journal of Mechanical Science and Technology
    • /
    • 제15권6호
    • /
    • pp.804-812
    • /
    • 2001
  • A triboelectrostatic separation system for removing unburned carbon from coal fly ash is designed and evaluated. Fly ash from a coal-fired power plant is used as an accepted additive in concrete where it adds strength, sulfate resistance and reduced cost, provided acceptable levels of unburned carbon are maintained. Unfortunately, unburned carbon in coal fly ash absorbs some of other additives and reduces the concrete strength. This paper describes to investigate dry triboelectrostatic process to separate unburned carbon from coal fly ash and utilize it into economically valuable products. The laboratory-scale triboelectrostatic separation system consists of a particle feeding system, a tribocharger, a separation chamber, and collection systems. Particles of unburned carbon and fly ash can be imparted positive and negative surface charges, respectively, with a copper tribocharger due to differences in the work function values of the particles and the tribocharger, and can be separated by passing them through an external electric field. Results showed that fly ash recovery was strongly dependent on the electric field strength and the particle size. 70wt% of fly ash containing 6.5wt% of carbon contents could be recovered at carbon contents below 3%. The triboelectrostatic separation system showed a potential to be an effective method for removing unburned carbon from coal fly ash.

  • PDF

An experimental study on quality change of concrete according to fly ash using (플라이애쉬 사용에 따른 콘크리트 품질변화에 관한 실험적 연구)

  • Park, Il-Yong;Paik, Min-Su;Shon, Jong-Kyu;Choi, Soo;Jung, Sang-Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 한국콘크리트학회 1999년도 봄 학술발표회 논문집(I)
    • /
    • pp.147-152
    • /
    • 1999
  • The purpose of this study is to offer foundmental information of fly ash concrete for field application. Through before study of fly ash concrete, various properties were checked. but when fly ash was added In concrete, entrained air quantity was decreased as fly ash substitution is increased in fresh concrete. so entrained air(below AE) quantity and a kind of AE according to fly ash substitution was tested basic properties. Also water-reducing efficiency was tested. And hydration heat according to fly ash substitution was tested by KR-100. As result of test, according to fly ash substitution increase, entrained air quantity is increase for target entrained air quantity, water-reducing efficiency and hydration heat are positive.

  • PDF

Effects of subsequent curing on chloride resistance and microstructure of steam-cured mortar

  • Hu, Yuquan;Hu, Shaowei;Yang, Bokai;Wang, Siyao
    • Advances in concrete construction
    • /
    • 제9권5호
    • /
    • pp.449-457
    • /
    • 2020
  • The influence of subsequent curing on the performance of fly ash contained mortar under steam curing was studied. Mortar samples incorporated with different content (0%, 20%, 50% and 70%) of Class F fly ash under five typical subsequent curing conditions, including standard curing (ZS), water curing(ZW) under 25℃, oven-dry curing (ZD) under 60℃, frozen curing (ZF) under -10℃, and nature curing (ZN) exposed to outdoor environment were implemented. The unsteady chloride diffusion coefficient was measured by rapid chloride migration test (RCM) to analyze the influence of subsequent curing condition on the resistance to chloride penetration of fly ash contained mortar under steam curing. The compressive strength was measured to analyze the mechanical properties. Furthermore, the open porosity, mercury intrusion porosimetry (MIP), x-ray diffraction (XRD) and thermogravimetric analysis (TGA) were examined to investigate the pore characteristics and phase composition of mortar. The results indicate that the resistance to chloride ingress and compressive strength of steam-cured mortar decline with the increase of fly ash incorporated, regardless of the subsequent curing condition. Compared to ZS, ZD and ZF lead to poor resistance to chloride penetration, while ZW and ZN show better performance. Interestingly, under different fly ash contents, the declining order of compressive strength remains ZS>ZW>ZN>ZD>ZF. When the fly ash content is blow 50%, the open porosity grows with increase of fly ash, regardless of the curing conditions are diverse. However, if the replacement amount of fly ash exceeds a certain high proportion (70%), the value of open porosity tends to decrease. Moreover, the main phase composition of the mortar hydration products is similar under different curing conditions, but the declining order of the C-S-H gels and ettringite content is ZS>ZD>ZF. The addition of fly ash could increase the amount of harmless pores at early age.

Effect of Fly Ash on the Yield and Quality of Tobacco (석탄회 시용이 연초의 수량 및 품질에 미치는 영향)

  • 홍순달;석영선
    • Journal of the Korean Society of Tobacco Science
    • /
    • 제19권2호
    • /
    • pp.92-101
    • /
    • 1997
  • This study was conducted to investigate the effect of fly ash on the yield and quality and to determine the optimum application amount of fly ash for tobacco(Nicotiana tabacum L). Two kinds of fly ash, anthracite and bituminous coal, were treated with different levels of 0, 20, 40, 60 MT/ha. Dry weights of tobacco at middle and topping growth stage were increased with application of fly ash, showing the highest dry weight at 40 MT/ha in both kinds of fly ash. It was showed that the bituminous coal had a little more effective for yield than that of anthracite. Comparing with the control, yields of tobacco applied with fly ash were significantly increased about 17.7% and 17.1% by the application of bituminous coal and anthracite, respectively. Quality of flue-cured leaves was better by application of fly ash than that of the control. The quality index was given the highest at 40 MT/ha for bituminous coal increasing by 24.6% and at 60 MT/ha fur anthracite increasing by 13.4% compared with the control. The economical efficiency considered of the yield and quality of tobacco was the highest at 40 MT/ha of bituminous. Soil pH, contents of available P2O5, organic matter, exchangeable Ca2+ and Mg2+ of soil during the growing season were increased by application of fly ash, showing more effectiveness in bituminous than that in anthracite. By the application of fly ash, the nutrients availability and the acidity of soil were reformed and they caused significantly the increase of growths yield, and quality of tobacco. By the application of lime reforming soil acidity, growth response, yields and quality of tobacco were not increased compared to the control, although the effect of reforming soil pH was remarkable.

  • PDF

Effects of NaOH and Na2SiO3·9H2O Addition on Strength Development of Class F Fly Ash-Mortar (F급 플라이 애쉬-모르타르의 강도발현에 대한 NaOH과 Na2SiO3·9H2O 첨가의 영향)

  • Park, Sang-Sook;Kang, Hwa-Young;Han, Sang-Ho;Kang, Hee-Bog
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • 제9권4호
    • /
    • pp.261-269
    • /
    • 2005
  • The object of this research is to produce alkali activated fly ash-cement using low calcium fly ash as substitute for portland cement. The experimental program included activation of fly ash by a strong base(NaOH) at different concentration, temperature, and liquid-to-fly ash ratios. To achieve for higher compressive strength of the hardened product, sodium meta silicate is added to the alkaline solution. From the factors considered on strength development, the ratio of liquid/fly ash, the activator concentration and temperature always result to be significative factors. The optimization studied show that the alkaline solution concentration of $NaOH(210g)+Na_2SiO_3{\cdot}9H_2O(30g)+H_2O=1L$ at $50^{\circ}C$ produces the best alkali activation effect for the low calcium fly ash. SEM and XRD patterns showed that the components of alkali-activated fly ash consist mainly of mullite, quartz and amorphous aluminosilicate.

A model to characterize the effect of particle size of fly ash on the mechanical properties of concrete by the grey multiple linear regression

  • Cui, Yunpeng;Liu, Jun;Wang, Licheng;Liu, Runqing;Pang, Bo
    • Computers and Concrete
    • /
    • 제26권2호
    • /
    • pp.175-183
    • /
    • 2020
  • Fly ash has become an important component of concrete as supplementary cementitious material with the development of concrete technology. To make use of fly ash efficiently, four types of fly ash with particle size distributions that are in conformity with four functions, namely, S.Tsivilis, Andersen, Normal and F distribution, respectively, were prepared. The four particle size distributions as functions of the strength and pore structure of concrete were thereafter constructed and investigated. The results showed that the compressive and flexural strength of concrete with the fly ash that conforming to S.Tsivilis, Normal, F distribution increased by 5-10 MPa and 1-2 MPa, respectively, compared to the reference sample at 28 d. The pore structure of the concrete was improved, in which the total porosity of concrete decreased by 2-5% at 28 d. With regarding to the fly ash with Andersen distribution, it was however not conducive to the strength development of concrete. Regression model based on the grey multiple linear regression theory was proved to be efficient to predict the strength of concrete, according to the characteristic parameters of particle size and pore structure of the fly ash.