• Title/Summary/Keyword: On-state drain current

Search Result 52, Processing Time 0.017 seconds

Breakdown Voltage for Doping Concentration of Sub-10 nm Double Gate MOSFET (10 nm 이하 DGMOSFET의 도핑농도에 따른 항복전압)

  • Jung, Hakkee
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.688-690
    • /
    • 2017
  • Reduction of breakdown voltage is serious short channel effect (SCE) by shrink of channel length. The SCE occurred in on-state transistor raises limitation of operation range of transistor. The deviation of breakdown voltage for doping concentration is investigated with structural parameters of sub-10 nm double gate (DG) MOSFET in this paper. To analyze this, thermionic and tunneling current are derived from analytical potential distribution, and breakdown voltage is defined as drain voltage when the sum of two currents is $10{\mu}A$. As a result, breakdown voltage increases with increase of doping concentration. Breakdown voltage decreases by reduction of channel length. In order to solve this problem, it is found that silicon and oxide thicknesses should be kept very small. In particular, as contributions of tunneling current increases, breakdown voltage increases.

  • PDF

Electrical response of tungsten diselenide to the adsorption of trinitrotoluene molecules (폭발물 감지 시스템 개발을 위한 TNT 분자 흡착에 대한 WSe2 소자의 전기적 반응 특성 평가)

  • Chan Hwi Kim;Suyeon Cho;Hyeongtae Kim;Won Joo Lee;Jun Hong Park
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.6
    • /
    • pp.255-260
    • /
    • 2023
  • As demanding the detection of explosive molecules, it is required to develop rapidly and precisely responsive sensors with ultra-high sensitivity. Since two-dimensional semiconductors have an atomically thin body nature where mobile carriers accumulate, the abrupt modulation carrier in the thin body channel can be expected. To investigate the effectiveness of WSe2 semiconductor materials as a detection material for TNT (Trinitrotoluene) explosives, WSe2 was synthesized using thermal chemical vapor deposition, and afterward, WSe2 FETs (Field Effect Transistors) were fabricated using standard photo-lithograph processes. Raman Spectrum and FT-IR (Fourier-transform infrared) spectroscopy reveal that the adsorption of TNT molecules induces the structural transition of WSe2 crystalline. The electrical properties before and after adsorption of TNT molecules on the WSe2 surface were compared; as -50 V was applied as the back gate bias, 0.02 μA was recorded in the bare state, and the drain current increased to 0.41 μA with a dropping 0.6% (w/v) TNT while maintaining the p-type behavior. Afterward, the electrical characteristics were additionally evaluated by comparing the carrier mobility, hysteresis, and on/off ratio. Consequently, the present report provides the milestone for developing ultra-sensitive sensors with rapid response and high precision.