• Title/Summary/Keyword: On-site sewage treatment system

Search Result 25, Processing Time 0.03 seconds

Sewage Treatment Characteristics and Efficiencies of Absorbent Biofilter Systems (흡수성 바이오필터 시스템의 오수처리 특성 및 효율)

  • Cheon, Gi-Seol;Kwun, Soon-Kuk;Kim, Song-Bae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.5
    • /
    • pp.131-139
    • /
    • 2004
  • In this study, on-site sewage treatment tests were conducted using the Absorbent Biofilter System (ABS) under different hydraulic loading rates to examine its treatment characteristics and efficiencies and to determine its feasibility as a small on-site sewage treatment system in a rural area. Results showed that the removal rates of BOD and SS were satisfactory at hydraulic loading rates of 100~150 cm/day, meeting the Korean effluent water quality standards for the riparian zone (10 mg/L). In the case of nutrients (N, P), however, the system did not perform well, necessitating further improvement for nutrient removal. A comparative analysis indicated that as a small on-site sewage treatment system, the ABS would be more suitable than other treatment systems in terms of performance stability, maintenance requirement, and cost-effectiveness and could be applied as an alternative treatment system in Korean rural areas.

Enhancement of Sewage Treatment Efficiencies by Recirculation in Absorbent Biofilter System (재순환에 의한 흡수성 바이오필터 시스템의 오수처리효율 향상)

  • Kwun, Soon-Kuk;Cheon, Gi-Seol;Kim, Song-Bae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.3
    • /
    • pp.69-76
    • /
    • 2005
  • An Absorbent Biofilter System (ABS) combined with the recirculation process was investigated for the feasible application in additional removing of organics (BOD, SS) as well as nutrients (TN, TP) from small Community wastewater in Korea. Polyurethane biofilter media with high porosity and large surface area were /used for the aerobic system. A part of treated wastewater was recirculated into the anoxic septic tank to promote removal of nutrients. The concentrations of BOD and SS of treated wastewater satisfied the regulations for small on-site wastewater treatment facility (10 mg/L) during the overall experimental period. The effluent concentrations of BOD and SS were decreased with enhancement of removal efficiencies of 95.7 and $96.7\%$. The nitrogen and phosphorus removal efficiencies by the recirculation increased to $52.9\%\;and\;43.2\%$ in average during the overall experimental period, respectively. With the improvement, these values were increased as much as additional 42 and $18\%$ compared with those of non-recirculation. The rates of nitrification and denitrification were enhanced showing $65\~77\%\;and\;42\~92\%$, respectively. The described process modification is a low cost and effective method of enhancing nitrogen and phosphorus removal, especially on existing systems without changing major design components of a treatment facility.

The Assessment on the Effect of Discharge and Variation of Water Quality from the Sewage Treatment Plants in Seoul (서울시 하수처리장 수질의 변동 및 방류수의 영향 평가)

  • Kwak Mi-Ae;Jung Jong-Heub;Eo Soo-Mi;Lee Hong-Keun
    • Journal of environmental and Sanitary engineering
    • /
    • v.19 no.3 s.53
    • /
    • pp.1-12
    • /
    • 2004
  • This study was conducted to evaluate the variation characteristics of influent and effluent quality from sewage treatment facilities using activated sludge processes and to assess the impact caused by discharge of treated sewage on the receiving water Monthly data of five water quality items (BOD, COD, SS, T-N, T-P) were used to understand the water quality at three sewage treatment plants in Seoul for five years from 1999 to 2003. Concentration differences of water quality parameters were observed between upstream and downstream site at the sewage treatment plant outfall to investigate the impact of discharge in Tan stream and Han river basin. 1. Due to the effect of continuous improvement in sewer system, the concentrations of influent went on increasing generally. 2. Effluent concentrations of BOD, COD and SS showed the trend of a little decreasing, but the trend of increasing in T-N and T-P. 3. In Tan stream basin, the impact of sewage treatment plant discharge was not observed directly, because concentration of discharge was lower than stream water's. But discharges from sewage treatment plants affected water quality at downstream site in Han river, concentration of T-P especially.

A Study on Improvement of Sewage Treatment System (오염처리장의 처리효율 개선연구)

  • 성일화
    • Journal of Environmental Health Sciences
    • /
    • v.19 no.3
    • /
    • pp.36-40
    • /
    • 1993
  • The objective of this research was to retrofit an on-site sewage treatment system suitable to current situation of Korea to reduce the pollution loading and preserve the invaluable water resources. Operation at the F/M ratio of 0.1 kg. BOD/kg MLSS day showed 87.1% BOD removal efficiency and 84.5% COD removal efficiency, and its effluent concentration was 6.4 mg/l as BOD and 21.7 mg/l as COD. Average removal of total nitrogen showed high removal efficiency of 80%.

  • PDF

A Study on Treatment Measures of Carcass Disposal Site Leachate into the Livestock Manure and Sewage Treatment Facilities using NIER-MASS program (NIER-MASS 프로그램을 이용한 가축매립지 침출수 연계처리 방안 연구)

  • Jeong, Dong-Hwan;Lee, Chulgu;Shin, Jinsoo;Kim, Hyunwoo;Yoon, Soohyang;Kim, Yongseok;Yu, Soonju;Kim, Shinjo
    • Journal of Environmental Impact Assessment
    • /
    • v.21 no.5
    • /
    • pp.725-734
    • /
    • 2012
  • The outbreak of foot and mouth disease in November 2010 raised many social, economic and environmental issues and water contaminations by leachate from carcass disposal sites particularly emerged as a serious concern. In oder to efficiently handle these problems, a critical method is required to transport leachate to livestock manure and sewage treatment plants and purify it. This study aims to present the best applicable method to transport leachate from carcass disposal sites into livestock manure and sewage treatment facilities. We investigated the biological and chemical characteristics such as BOD, COD, SS, TN, TP and Total coliforms. Current conjugated treatments in livestock manure and sewage treatment plants was studied by surveying the operations of those facilities. The NIER-MASS(National Institute of Environmental Research - Mass Balance Evaluation System of Sewage Treatment Facilities) program was applied to present the best conjugated treatment method through estimating the maximum daily load to meet the water quality standards in effluent.

Current Condition and Prospect of On-Site Domestic Wastewater Treatment Technologies (합병정화조 기술현황 및 전망)

  • 임연택
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1998.06a
    • /
    • pp.95-112
    • /
    • 1998
  • Water quality in the public water course has been polluted more seriously than ever before due to the increase of the number and aremount of pollution sources such as domestic and industrial wastewater. For water quality conservation, the Korean government has been trying to construct sewage treatment facilities continually, of which treatment capacity reached to 11,452,400m$^{3}$/day in 1996. Night soil treatment facilites of m nationwide have the treatment capacity of 24,038m$^{3}$/day. But water quality has not been improved because the sewer systems were insufficient and the treatment efficiencies of sewage were not high, enough. For renovation of water quality, miscellaneous domestic wastewater must be treated because 27g BOD/day out of total 40g BOD/person-day come from miscellaneous wastewater, comparing to 13g BOD/day from night soil. However, sole treatment purifier treat only night soil from the flushing toilet. Therefore, it may be desirable to treat the miscellaneous domestic wastewater and the night soil from flushing toilet together by joint treatment purifier system as on-site domestic wastewater treatment technology. In Korea, the joint treatment purifier system, introduced in 1997, have the benefit as follows; i) good water poiluion control effect, ii ) good effect on river water flow, iii) water pollution control with sewage treatment facility, and iv) rapid pollution control effect, etc. In order to achieve a good effect as stated before, i ) strengthening effluent guideline including BOD, nitrogen and phosphorus, ii ) specializing operation to maintain high performance, and iii) supporting its construction and maintenance costs by the governmental level may be necessary: In addition, automation system of joint treatment purifier, technology for its package and compactness, and a new bio-media bio-filter with higher capacity should be further developed in agreement with a more stringent effluent guideline.

  • PDF

The Effective Maintenance of Sewage Treatment Plant with Development of Database Management Library (자료관리(資料管理) Library의 개발(開發)을 통한 하수처리장(下水處理場)의 효율적(效率的)인 유지관리(維持管理))

  • Lee, Jae-Kee;Lee, Hyun-Jik;Choi, Suk-Kun;Park, Kyung-Yeol;Lho, Byeong-Cheol
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.5 no.1 s.9
    • /
    • pp.103-118
    • /
    • 1997
  • In recent years, there have been emerging the establishment and extension of sewage treatment facilities in many cities due to population growth and high standard for sewage treatment. The objective of this study is to develop and implement a Data Management Library which could deal with enormous amount of graphic and attribute data effectively and afficiently. Based on the Data Management Library developed, the Sewage Treatment Management System(STMS) was Implemented and investigated in preparation for the extension of sewage treatment facilities. Cheongju city enviromental station was selected as a test site. We first analyzed current work flow in sewage treatment and then performed database design suitable for managing sewage treatment in effective fashion. The STMS consists mainly of two parts : one is for manipulating the graphic and attribute data and the other for application of sewage treatment related works. Conclusively, the STMS developed in this study could be utilized as a comer stone for an effective maintenance and management of sewage treatment.

  • PDF

Hydrothermal carbonization of sewage sludge for solid recovered fuel and energy recovery (수열탄화를 이용한 하수 슬러지의 고형연료화 및 에너지 회수 효율)

  • Kim, Daegi;Lee, Kwanyong;Park, Kiyoung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.29 no.1
    • /
    • pp.57-63
    • /
    • 2015
  • Recently, Korea's municipal wastewater treatment plants generated amount of wastewater sludge per day. However, ocean dumping of sewage sludge has been prohibited since 2012 by the London dumping convention and protocol and thus removal or treatment of wastewater sludge from field sites is an important issue on the ground site. The hydrothermal carbonization is one of attractive thermo-chemical method to upgrade sewage sludge to produce solid fuel with benefit method from the use of no chemical catalytic. Hydrothermal carbonization improved that the upgrading fuel properties and increased materials and energy recovery, which is conducted at temperatures ranging from 200 to $350^{\circ}C$ with a reaction time of 30 min. Hydrothermal carbonization increased the heating value though the increase of the carbon and fixed carbon content of solid fuel due to dehydration and decarboxylation reaction. Therefore, after the hydrothermal carbonization, the H/C and O/C ratios decreased because of the chemical conversion. Energy retention efficiency suggest that the optimum temperature of hydrothermal carbonization to produce more energy-rich solid fuel is approximately $200^{\circ}C$.

A Study on the Odor Removal Control System of Sewage Sludge

  • KIM, Su-Hye;LEE, So-Hee;YUN, Yeo-Jin;CHOI, Soo-Young;JUNG, Min-Jae;KWON, Woo-Taeg
    • Journal of Wellbeing Management and Applied Psychology
    • /
    • v.4 no.2
    • /
    • pp.19-25
    • /
    • 2021
  • Purpose: The purpose of this study is to reduce odor complaints by identifying problems with odor management at the site of the water regeneration center and researching odor management methods. Due to the high population density of Korea, sewage treatment facilities are adjacent to residential and industrial areas. According to previous studies, the main malodor-emitting facilities of sewage treatment facilities were preliminary treatment facilities (2,220 times), sedimentation basins (4,628 times), and sludge treatment facilities (9,616 times). Research design, data and methodology: Compound malodors and designated malodor-producing substances were collected from five site boundaries of the water regeneration center and analyzed according to the official methods to test malodor, and a total of two times (August and September 2020) were conducted. Results: As a result of the measurement, in the green area in front of the center office, compound malodors were detected at a maximum of 8 times and at least 3 times during the dawn time. As for the designated malodor-producing substances, 0.1ppm of ammonia was detected in the green area in front of the center office and the park golf course. This is within 15 times the maximum allowable emission level of compound malodors and within 1ppm of the maximum allowable emission level of ammonia. Conclusions: Even if the dilution rate of the compound malodors did not exceed the maximum allowable emission level, the odor could be recognized, and more research is needed in the future to establish effective reduction measures according to the subjective and individual and seasonal odor characteristics.

Feasibility Study on the Construction of Small Hydro-Power Plants in Gumi Sewage Treatment Plant Discharge Point (구미하수처리장 방류구에서의 소수력발전 설치 및 운영에 관한 연구)

  • Nah, Dong-Hun;Lee, Seung-Hwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.2
    • /
    • pp.173-181
    • /
    • 2010
  • This study was conducted to investigate the possible installation of small hydro-power plant at the discharge point of Gumi sewage treatment plant (STP) using treated wastewater. Sufficient amount of water to transfer to electric power and the selection of proper location are two essential elements for the construction of small hydro-power facility. Preliminary analysis based on site visit and existing data in Gumi STP were made. Capacity of the small hydro-power plants and exact location were determined by geomorphological condition and flow duration characteristics. Flow duration characteristics and its duration curve were identified using monthly rainfall data in Gumi STP. Relevant facts of small hydro-power system in other STP were referred to adopt to Gumi STP situation. Flowrate of treated effluents and effective head between flow chamber and the location of hydraulic turbine in Gumi STP are found to be $3.70m^3$/sec and 3.5m respectively. Electric generation rate based on this feasibility study was estimated to be 86.3kW/h. Yearly electric generation rate was expected to be 932.4MMh. Proposed small hydro-power plant construction in Gumi STP is to be reasonable.