• Title/Summary/Keyword: On-site dosimetry

Search Result 6, Processing Time 0.028 seconds

A new research program that aims to establish an external audit system to radiotherapy QA in Japan

  • Shimbo, Munefumi;Tabushi, Katsuyoshi;Endo, Masahiro;Ikeda, Hiroshi
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.17-18
    • /
    • 2002
  • Last year, a three-year research program was started in order to establish an external audit system to radiotherapy QA in Japan. It consists of questionnaire surveys, mailed (off-site) dosimetry and visited (on-site) dosimetry at radiotherapy facilities in Japan. The first questionnaire was sent to all Japanese radiotherapy facilities in October 2001, surveying basic QA procedures at each facility. 628 answers were returned with the return rate of 87%. In February 2002, the second questionnaire was sent. Off-site and on-site dosimetry have been tested in several facilities, and will be started soon. We anticipates that this program will gradually grow to a radiotherapy quality control center similar to Radiological Physics Center at MD Anderson Hospital.

  • PDF

OVERVIEW OF HEALTH PHYSICS STUDIES ON TRITIUM BETA RADIATION (삼중수소 베타방사선에 관한 보건물리 연구의 적용)

  • Hwang, Sun-Tae;Hah, Suk-Ho
    • Progress in Medical Physics
    • /
    • v.5 no.1
    • /
    • pp.75-85
    • /
    • 1994
  • As we enter the 2000s, there are four nuclear power units of the pressurized heavy water reactor-type in the commercial operation at the Wolsung Nuclear Power Plant(NPP) site where a larger amount of tritium ($\^$3/H) is released inevitably to the site environment. This radioctive nuclide is easily distributed throghout our environment because of its ubiquitous form as tritiated water (HTO) and its persistence in the environment. Tritum has certain characterisitics that present unique challenges for beta radiation dosimety and health risk assesment. In this paper, therefore, a variety of matters on tritium are considered and reviewed in terms of its characteristics and sources, metabolism and dosimetry, microdosimetry, radiobiology, risk assessment, and transport and cycling in the environment, etc.

  • PDF

Absorbed and effective dose from periapical radiography by portable intraoral x-ray machine (이동형 구내 방사선촬영기로 촬영한 치근단 방사선사진의 흡수선량 및 유효선량 평가)

  • Cho, Jeong-Yeon;Han, Won-Jeong;Kim, Eun-Kyung
    • Imaging Science in Dentistry
    • /
    • v.37 no.3
    • /
    • pp.149-156
    • /
    • 2007
  • Purpose: The purpose of this study was to measure the absorbed dose and to calculate the effective dose for periapical radiography done by portable intraoral x-ray machines. Materials and Methods: 14 full mouth, upper posterior and lower posterior periapical radiographs were taken by wall-type 1 and portable type 3 intraoral x-ray machines. Thermoluminescent dosemeters were placed at 23 sites at the layers of the tissue-equivalent ART woman phantom for dosimetry. Average tissue absorbed dose and radiation weighted dose were calculated for each major anatomical site. Effective dose was calculated using 2005 ICRP tissue weighted factors. Results: On 14 full mouth periapical radiographs, the effective dose for wall-type x-ray machine was 30 Sv; for portable x-ray machines were 30 Sv, 22 Sv, 36 Sv. On upper posterior radiograph, the effective dose for wall-type x-ray machine was 4 Sv; for portable x-ray machines doses were 4 Sv, 3 Sv, 5 Sv. On lower posterior radiograph, the effective dose for wall type x-ray machine was 5 Sv; for portable x-ray machines doses were 4 Sv, 4 Sv, 5 Sv. Conclusion: Effective doses for periapical radiographs performed by portable intraoral x-ray machines were similar to doses for periapical radiographs taken by wall type intraoral x-ray machines.

  • PDF

Influence of different boost techniques on radiation dose to the left anterior descending coronary artery

  • Park, Kawngwoo;Lee, Yongha;Cha, Jihye;You, Sei Hwan;Kim, Sunghyun;Lee, Jong Young
    • Radiation Oncology Journal
    • /
    • v.33 no.3
    • /
    • pp.242-249
    • /
    • 2015
  • Purpose: The purpose of this study is to compare the dosimetry of electron beam (EB) plans and three-dimensional helical tomotherapy (3DHT) plans for the patients with left-sided breast cancer, who underwent breast conserving surgery. Materials and Methods: We selected total of 15 patients based on the location of tumor, as following subsite: subareolar, upper outer, upper inner, lower lateral, and lower medial quadrants. The clinical target volume (CTV) was defined as the area of architectural distortion surrounded by surgical clip plus 1 cm margin. The conformity index (CI), homogeneity index (HI), quality of coverage (QC) and dose-volume parameters for the CTV, and organ at risk (OAR) were calculated. The following treatment techniques were assessed: single conformal EB plans; 3DHT plans with directional block of left anterior descending artery (LAD); and 3DHT plans with complete block of LAD. Results: 3DHT plans, regardless of type of LAD block, showed significantly better CI, HI, and QC for the CTVs, compared with the EB plans. However, 3DHT plans showed increase in the $V_{1Gy}$ at skin, left lung, and left breast. In terms of LAD, 3DHT plans with complete block of LAD showed extremely low dose, while dose increase in other OARs were observed, when compared with other plans. EB plans showed the worst conformity at upper outer quadrants of tumor bed site. Conclusion: 3DHT plans offer more favorable dose distributions to LAD, as well as improved target coverage in comparison with EB plans.

Plan-Class Specific Reference Quality Assurance for Volumetric Modulated Arc Therapy

  • Rahman, Mohammad Mahfujur;Kim, Chan Hyeong;Kim, Seonghoon
    • Journal of Radiation Protection and Research
    • /
    • v.44 no.1
    • /
    • pp.32-42
    • /
    • 2019
  • Background: There have been much efforts to develop the proper and realistic machine Quality Assurance (QA) reflecting on real Volumetric Modulated Arc Therapy (VMAT) plan. In this work we propose and test a special VMAT plan of plan-class specific (pcsr) QA, as a machine QA so that it might be a good solution to supplement weak point of present machine QA to make it more realistic for VMAT treatment. Materials and Methods: We divided human body into 5 treatment sites: brain, head and neck, chest, abdomen, and pelvis. One plan for each treatment site was selected from real VMAT cases and contours were mapped into the computational human phantom where the same plan as real VMAT plan was created and called plan-class specific reference (pcsr) QA plan. We delivered this pcsr QA plan on a daily basis over the full research period and tracked how much MLC movement and dosimetric error occurred in regular delivery. Several real patients under treatments were also tracked to test the usefulness of pcsr QA through comparisons between them. We used dynalog file viewer (DFV) and Dynalog file to analyze position and speed of individual MLC leaf. The gamma pass rate from portal dosimetry for different gamma criteria was analyzed to evaluate analyze dosimetric accuracy. Results and Discussion: The maxRMS of MLC position error for all plans were all within the tolerance limit of < 0.35 cm and the positional variation of maxPEs for both pcsr and real plans were observed very stable over the research session. Daily variations of maxRMS of MLC speed error and gamma pass rate for real VMAT plans were observed very comparable to those in their pcsr plans in good acceptable fluctuation. Conclusion: We believe that the newly proposed pcsr QA would be useful and helpful to predict the mid-term quality of real VMAT treatment delivery.

Evaluation of the Usefulness of Patient Customized Shielding Block Made with 3D Printer in the Skin Cancer Electron Beam Therapy (전자선치료 시 3D 프린터로 제작한 환자 맞춤형 차폐체의 유용성 평가)

  • Ahn, Ki-Song;Jung, Woo-Chan;Kim, Dae-Hyun;Kim, Moo-Sub;Yoon, Do-Kun;Shim, Jae-Goo;Suh, Tae-Suk
    • Journal of radiological science and technology
    • /
    • v.42 no.6
    • /
    • pp.447-454
    • /
    • 2019
  • In order to improve and supplement the shielding method for electron beam treatment, we designed a patient-specific shielding method using a 3D printer, and evaluated the usefulness by comparing and analyzing the distribution of electron beam doses to adjacent organs. In order to treat 5 cm sized superficial tumors around the lens, a CT Simulator was used to scan the Alderson Rando phantom and the DICOM file was converted into an STL file. The converted STL file was used to design a patient-specific shield and mold that matched the body surface contour of the treatment site. The thickness of the shield was 1 cm and 1.5 cm, and the mold was printed using a 3D printer, and the patient customized shielding block (PCSB) was fabricated with a cerrobend alloy with a thickness of 1 cm and 1.5 cm. The dosimetry was performed by attaching an EBT3 film on the surface of the Alderson Rando phantom eyelid and measuring the dose of 6, 9, and 12 MeV electron beams on the film using four shielding methods. Shielding rates were 83.89%, 87.14%, 87.39% at 6, 9, and 12 MeV without shielding, 1 cm (92.04%, 87.48%, 86.49%), 1.5 cm (91.13%, 91.88% with PSCB), 92.66%) The shielding rate was measured as 1 cm (90.7%, 92.23%, 88.08%) and 1.5 cm (88.31%, 90.66%, 91.81%) when the shielding block and the patient-specific shield were used together. PCSB fabrication improves shielding efficiency over conventional shielding methods. Therefore, PSCB may be useful for clinical application.