• Title/Summary/Keyword: On-line Learning

Search Result 850, Processing Time 0.027 seconds

Servo-Writing Method using Feedback Error Learning Neural Networks for HDD (피드백 오차 학습 신경회로망을 이용한 하드디스크 서보정보 기록 방식)

  • Kim, Su-Hwan;Chung, Chung-Choo;Shim, Jun-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.699-701
    • /
    • 2004
  • This paper proposes the algorithm of servo- writing based on feedback error learning neural networks. The controller consists of feedback controller using PID and feedforward controller using gaussian radial basis function network. Because the RBFNs are trained by on-line rule, the controller has adaptation capability. The performance of the proposed controller is compared to that of conventional PID controller. Proposed algorithm shows better performance than PID controller.

  • PDF

Adaptive Learning Control of an Uncertain Robot Manipulator Using Fuzzy-Neural Network Controller (퍼지-신경망 제어기를 이용한 불확실한 로보트 매니퓰레이터의 적응 학습 제어)

  • 김성현;최영길;김용호;전홍태
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.5
    • /
    • pp.25-32
    • /
    • 1996
  • This paper will propose the direct adaptive learning control scheme based on adaptive control technique and intelligent control theory for a nonlinear system. Using the proposed learning control scheme, we will apply to on-line control an uncertain but for model perfect matching, it's structure condition is known. The effectiveness of the proposed control schem will be illustrated by simulations of a robot manipulator.

  • PDF

A study of distillation column control by using a neural controller (신경제어기를 이용한 증류탑의 제어에 관한 연구)

  • 이문용;박선원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.234-239
    • /
    • 1990
  • A neural controller for process control was proposed that combines a simple feedback controller with a neural network. This control was applied to distillation control. The feedback error learning technique was used for on-line learning. Important characteristics on neural controller were analyzed. The proposed neural controller can cope well with strong interactions, significant time delays, sudden changes in process dynamics without any prior knowledge of the process. It was shown that the neural controller has good features such as fault tolerance, interpolation effect and random learning capability

  • PDF

A NEW LEARNING ALGORITHM FOR DRIVING A MOBILE VEHICLE

  • Sugisaka, Masanori;Wang, Xin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.173-178
    • /
    • 1998
  • The strategy presented in this paper is based on modifying the past patterens and adjusting the content of the driving patterns by a new algorithm. Learning happens during the driving procedure of a mobile vehicle. The purpose of this paper is to solve the problem how to realize the hardware neurocomputer by back propagation (BP) neural network learning on-line.

  • PDF

The Effects of Online Project Learning on Information Utilizing Ability (온라인 프로젝트 학습이 정보 활용 능력 신장에 미치는 효과)

  • Park, Sun-Ju;Kim, Myeong-Sin
    • Journal of The Korean Association of Information Education
    • /
    • v.8 no.4
    • /
    • pp.563-571
    • /
    • 2004
  • The purpose of this paper is to suggest the method the fourth grade who haven't experienced with online project learning can perform the on-line project learning efficiently. And it is to see if there are any effects and improvement in using ICT after applying the online project learning system to the real school environment. For this, after analyzing the curriculum of Grade 4 in elementary school and abstracting some factors to improve the Information utilizing ability, I chose 12 topics of project learning. I built the on-line learning room and chose 6 topics among them. After practicing the project, I inspected the effects on them. And to understand the ICT-utilizing ability of the students, I analyzed if there were any improvement in ICT-utilizing ability with some questionnaires which consist of information collecting, information processing, and information interchanging according to the standards of Information utilizing ability of elementary and middle school students.

  • PDF

Control of a magnetic levitation system via feedback error learning

  • Hao, Shuang-Hui;Yang, Zi-Jiang;Tsuji, Teruo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.345-350
    • /
    • 1993
  • This paper presents an on-line feedback error learning control algorithm for a magnetic levitation system. It will be shown that even in the case of abrupt changes of the system parameters and disturbanes, the control performance is still very satisfactory.

  • PDF

On-line Bayesian Learning based on Wireless Sensor Network (무선 센서 네트워크에 기반한 온라인 베이지안 학습)

  • Lee, Ho-Suk
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2007.06d
    • /
    • pp.105-108
    • /
    • 2007
  • Bayesian learning network is employed for diverse applications. This paper discusses the Bayesian learning network algorithm structure which can be applied in the wireless sensor network environment for various online applications. First, this paper discusses Bayesian parameter learning, Bayesian DAG structure learning, characteristics of wireless sensor network, and data gathering in the wireless sensor network. Second, this paper discusses the important considerations about the online Bayesian learning network and the conceptual structure of the learning network algorithm.

  • PDF

Application of Neural Network for the Intelligent Control of Computer Aided Testing and Adjustment System (자동조정기능의 지능형제어를 위한 신경회로망 응용)

  • 구영모;이승구;이영민;우광방
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.1
    • /
    • pp.79-89
    • /
    • 1993
  • This paper deals with a computer aided control of an adjustment process for the complete electronic devices by means of an application of artificial neural network and an implementation of neuro-controller for intelligent control. Multi-layer neural network model is employed as artificial neural network with the learning method of the error back propagation. Information initially available from real plant under control are the initial values of plant output, and the augmented plant input and its corresponding plant output at that time. For the intelligent control of adjustment process utilizing artificial neural network, the neural network emulator (NNE) and the neural network controller(NNC) are developed. The initial weights of each neural network are determined through off line learning for the given product and it is also employed to cope with environments of the another product by on line learning. Computer simulation, as well as the application to the real situation of proposed intelligent control system is investigated.

  • PDF

Study on Efficient Impulsive Noise Mitigation for Power Line Communication

  • Seo, Sung-Il
    • International journal of advanced smart convergence
    • /
    • v.8 no.2
    • /
    • pp.199-203
    • /
    • 2019
  • In this paper, we propose the efficient impulsive noise mitigation scheme for power line communication (PLC) systems in smart grid applications. The proposed scheme estimates the channel impulsive noise information of receiver by applying machine learning. Then, the estimated impulsive noise is updated in data base. In the modulator, the impulsive noise which reduces the PLC performance is effectively mitigated through proposed technique. As an impulsive noise model, Middleton Class A interference model was employed. The performance is evaluated in terms of bit error rate (BER). From the simulation results, it is confirmed that the proposed scheme has better BER performance compared to the conventional model. As a result, the proposed noise mitigation improves the signal quality of PLC systems by effectively removing the channel noise. The results of the paper can be applied to PLC systems for smart grid.

An On-line Construction of Generalized RBF Networks for System Modeling (시스템 모델링을 위한 일반화된 RBF 신경회로망의 온라인 구성)

  • Kwon, Oh-Shin;Kim, Hyong-Suk;Choi, Jong-Soo
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.37 no.1
    • /
    • pp.32-42
    • /
    • 2000
  • This paper presents an on-line learning algorithm for sequential construction of generalized radial basis function networks (GRBFNs) to model nonlinear systems from empirical data. The GRBFN, an extended from of standard radial basis function (RBF) networks with constant weights, is an architecture capable of representing nonlinear systems by smoothly integrating local linear models. The proposed learning algorithm has a two-stage learning scheme that performs both structure learning and parameter learning. The structure learning stage constructs the GRBFN model using two construction criteria, based on both training error criterion and Mahalanobis distance criterion, to assign new hidden units and the linear local models for given empirical training data. In the parameter learning stage the network parameters are updated using the gradient descent rule. To evaluate the modeling performance of the proposed algorithm, simulations and their results applied to two well-known benchmarks are discussed.

  • PDF