• Title/Summary/Keyword: On-demand learning

Search Result 603, Processing Time 0.024 seconds

Education On Demand System Based on e-Learning Standards (e-Learning 표준에 기반한 주문형 교육 시스템)

  • Hong, Gun Ho;Song, Ha Yoon
    • The Journal of Korean Association of Computer Education
    • /
    • v.6 no.3
    • /
    • pp.99-108
    • /
    • 2003
  • This paper indicates limitations of the existing VOD(Video on Demand)-based on-line education systems and presents the design and implementation of Education on Demand (EOD) system as an alternative. EOD system is based on meta information expressed in XML and component technology. Overall system consists of authoring tool. contents server, learning policy system and contents viewer. which are utilized throughout the learning contents life-cycle. EOD system enables automated contents management using meta information exchange methodology that is conformant to the SCORM meta data presentation scheme. In addition, integrated management of interaction and feedback information along with the learning policy system provides customized learning guide for each individual learner. With the development of EOD system, this paper discusses about advanced on-line education system which surpasses existing content-providing-only systems.

  • PDF

An Empirical Study on Improving the Accuracy of Demand Forecasting Based on Multi-Machine Learning (다중 머신러닝 기법을 활용한 무기체계 수리부속 수요예측 정확도 개선에 관한 실증연구)

  • Myunghwa Kim;Yeonjun Lee;Sangwoo Park;Kunwoo Kim;Taehee Kim
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.406-415
    • /
    • 2024
  • As the equipment of the military has become more advanced and expensive, the cost of securing spare parts is also constantly increasing along with the increase in equipment assets. In particular, forecasting demand for spare parts one of the important management tasks in the military, and the accuracy of these predictions is directly related to military operations and cost management. However, because the demand for spare parts is intermittent and irregular, it is often difficult to make accurate predictions using traditional statistical methods or a single statistical or machine learning model. In this paper, we propose a model that can increase the accuracy of demand forecasting for irregular patterns of spare parts demanding by using a combination of statistical and machine learning algorithm, and through experiments on Cheonma spare parts demanding data.

Deep Learning Based Electricity Demand Prediction and Power Grid Operation according to Urbanization Rate and Industrial Differences (도시화율 및 산업 구성 차이에 따른 딥러닝 기반 전력 수요 변동 예측 및 전력망 운영)

  • KIM, KAYOUNG;LEE, SANGHUN
    • Journal of Hydrogen and New Energy
    • /
    • v.33 no.5
    • /
    • pp.591-597
    • /
    • 2022
  • Recently, technologies for efficient power grid operation have become important due to climate change. For this reason, predicting power demand using deep learning is being considered, and it is necessary to understand the influence of characteristics of each region, industrial structure, and climate. This study analyzed the power demand of New Jersey in US, with a high urbanization rate and a large service industry, and West Virginia in US, a low urbanization rate and a large coal, energy, and chemical industries. Using recurrent neural network algorithm, the power demand from January 2020 to August 2022 was learned, and the daily and weekly power demand was predicted. In addition, the power grid operation based on the power demand forecast was discussed. Unlike previous studies that have focused on the deep learning algorithm itself, this study analyzes the regional power demand characteristics and deep learning algorithm application, and power grid operation strategy.

Web Hypermedia Resources Reuse and Integration for On-Demand M-Learning

  • Berri, Jawad;Benlamri, Rachid;Atif, Yacine;Khallouki, Hajar
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.1
    • /
    • pp.125-136
    • /
    • 2021
  • The development of systems that can generate automatically instructional material is a challenging goal for the e-learning community. These systems pave the way towards large scale e-learning deployment as they produce instruction on-demand for users requesting to learn about any topic, anywhere and anytime. However, realizing such systems is possible with the availability of vast repositories of web information in different formats that can be searched, reused and integrated into information-rich environments for interactive learning. This paradigm of learning relieves instructors from the tedious authoring task, making them focusing more on the design and quality of instruction. This paper presents a mobile learning system (Mole) that supports the generation of instructional material in M-Learning (Mobile Learning) contexts, by reusing and integrating heterogeneous hypermedia web resources. Mole uses open hypermedia repositories to build a Learning Web and to generate learning objects including various hypermedia resources that are adapted to the user context. Learning is delivered through a nice graphical user interface allowing the user to navigate conveniently while building their own learning path. A test case scenario illustrating Mole is presented along with a system evaluation which shows that in 90% of the cases Mole was able to generate learning objects that are related to the user query.

Comparison of Machine Learning Tools for Mobile Application

  • Lee, Yo-Seob
    • International Journal of Advanced Culture Technology
    • /
    • v.10 no.3
    • /
    • pp.360-370
    • /
    • 2022
  • Demand for machine learning systems continues to grow, and cloud machine learning platforms are widely used to meet this demand. Recently, the performance improvement of the application processor of smartphones has become an opportunity for the machine learning platform to move from the cloud to On-Device AI, and mobile applications equipped with machine learning functions are required. In this paper, machine learning tools for mobile applications are investigated and compared the characteristics of these tools.

Enhancing Smart Grid Efficiency through SAC Reinforcement Learning: Renewable Energy Integration and Optimal Demand Response in the CityLearn Environment (SAC 강화 학습을 통한 스마트 그리드 효율성 향상: CityLearn 환경에서 재생 에너지 통합 및 최적 수요 반응)

  • Esanov Alibek Rustamovich;Seung Je Seong;Chang-Gyoon Lim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.1
    • /
    • pp.93-104
    • /
    • 2024
  • Demand response is a strategy that encourages customers to adjust their consumption patterns at times of peak demand with the aim to improve the reliability of the power grid and minimize expenses. The integration of renewable energy sources into smart grids poses significant challenges due to their intermittent and unpredictable nature. Demand response strategies, coupled with reinforcement learning techniques, have emerged as promising approaches to address these challenges and optimize grid operations where traditional methods fail to meet such kind of complex requirements. This research focuses on investigating the application of reinforcement learning algorithms in demand response for renewable energy integration. The objectives include optimizing demand-side flexibility, improving renewable energy utilization, and enhancing grid stability. The results emphasize the effectiveness of demand response strategies based on reinforcement learning in enhancing grid flexibility and facilitating the integration of renewable energy.

Development of Data Visualized Web System for Virtual Power Forecasting based on Open Sources based Location Services using Deep Learning (오픈소스 기반 지도 서비스를 이용한 딥러닝 실시간 가상 전력수요 예측 가시화 웹 시스템)

  • Lee, JeongHwi;Kim, Dong Keun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.8
    • /
    • pp.1005-1012
    • /
    • 2021
  • Recently, the use of various location-based services-based location information systems using maps on the web has been expanding, and there is a need for a monitoring system that can check power demand in real time as an alternative to energy saving. In this study, we developed a deep learning real-time virtual power demand prediction web system using open source-based mapping service to analyze and predict the characteristics of power demand data using deep learning. In particular, the proposed system uses the LSTM(Long Short-Term Memory) deep learning model to enable power demand and predictive analysis locally, and provides visualization of analyzed information. Future proposed systems will not only be utilized to identify and analyze the supply and demand and forecast status of energy by region, but also apply to other industrial energies.

Improved ensemble machine learning framework for seismic fragility analysis of concrete shear wall system

  • Sangwoo Lee;Shinyoung Kwag;Bu-seog Ju
    • Computers and Concrete
    • /
    • v.32 no.3
    • /
    • pp.313-326
    • /
    • 2023
  • The seismic safety of the shear wall structure can be assessed through seismic fragility analysis, which requires high computational costs in estimating seismic demands. Accordingly, machine learning methods have been applied to such fragility analyses in recent years to reduce the numerical analysis cost, but it still remains a challenging task. Therefore, this study uses the ensemble machine learning method to present an improved framework for developing a more accurate seismic demand model than the existing ones. To this end, a rank-based selection method that enables determining an excellent model among several single machine learning models is presented. In addition, an index that can evaluate the degree of overfitting/underfitting of each model for the selection of an excellent single model is suggested. Furthermore, based on the selected single machine learning model, we propose a method to derive a more accurate ensemble model based on the bagging method. As a result, the seismic demand model for which the proposed framework is applied shows about 3-17% better prediction performance than the existing single machine learning models. Finally, the seismic fragility obtained from the proposed framework shows better accuracy than the existing fragility methods.

A Study on the Improvement Means for the Fundamental Problems in Training Human Resources in the e-Learning Industry (S-러닝 전문인력 양성 기반 문제점 및 개선방향)

  • Kim, Shin-Pyo;Noh, Kyoo-Sung
    • Journal of Digital Convergence
    • /
    • v.3 no.1
    • /
    • pp.27-44
    • /
    • 2005
  • Nowadays, demand for human resource for the e-learning industry is rapidly increasing along with the expansion of e-learning market capacity. However. there are numerous difficulties in expansion and industrialization of e-learning due to insufficient supply of human resources to meet the demand. Therefore, the goal of this study is to present various policy directions that can supplement the supply or e-learning manpower. Overall contents of this study focus on presenting the long-term directions for fostering of human resources for e-learning industry. Among these, role of government policies for fostering of human resources for e-learning industry is being particularly emphasized because e-learning industry is still at its infant stage.

  • PDF

Machine Learning-based hydrogen charging station energy demand prediction model (머신러닝 기반 수소 충전소 에너지 수요 예측 모델)

  • MinWoo Hwang;Yerim Ha;Sanguk Park
    • Journal of Internet Computing and Services
    • /
    • v.24 no.2
    • /
    • pp.47-56
    • /
    • 2023
  • Hydrogen energy is an eco-friendly energy that produces heat and electricity with high energy efficiency and does not emit harmful substances such as greenhouse gases and fine dust. In particular, smart hydrogen energy is an economical, sustainable, and safe future smart hydrogen energy service, which means a service that stably operates based on 'data' by digitally integrating hydrogen energy infrastructure. In this paper, in order to implement a data-based hydrogen charging station demand forecasting model, three hydrogen charging stations (Chuncheon, Sokcho, Pyeongchang) installed in Gangwon-do were selected, supply and demand data of hydrogen charging stations were secured, and 7 machine learning and deep learning algorithms were used. was selected to learn a model with a total of 27 types of input data (weather data + demand for hydrogen charging stations), and the model was evaluated with root mean square error (RMSE). Through this, this paper proposes a machine learning-based hydrogen charging station energy demand prediction model for optimal hydrogen energy supply and demand.