• Title/Summary/Keyword: On-demand Vehicle

Search Result 473, Processing Time 0.027 seconds

A Study to Determine the Optimized Location for Fast Electric Vehicle Charging Station Considering Charging Demand in Seoul (서울시 전기차 충전수요를 고려한 급속충전소의 최적입지 선정 연구)

  • Ji gyu Kim;Dong min Lee;Su hwan Kim
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.6
    • /
    • pp.57-69
    • /
    • 2022
  • Even though demand to charge EV(electric vehicles) is increasing, there are some problems to construct EV charging stations and problems from deficient them. Typical problem of EV charging stations is discordance for EV charging station location with its demand. This study investigates methods to determine the optimized location for fast EV charging stations considering charging demand in Seoul. Firstly, variables influencing on determination of determine the optimized location for fast EV charging stations were decided, and then evaluation of weights of the variables and data collection were conducted. Using the weights, location potential scores for each area-cell were calculated and optimized locations for fast EV charging stations were resulted.

Korean V2G Technology Development for Flexible Response to Variable Renewable Energy (변동성 재생e 유연 대응을 위한 한국형 V2G 기술개발)

  • Son, Chan;Yu, Seung-duck;Lim, You-seok;Park, Ki-jun
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.7 no.2
    • /
    • pp.329-333
    • /
    • 2021
  • V2G (Vehicle to Grid) technology for an EV (Electric Vehicle) has been assumed as so promising in a near future for its useful energy resource concept but still yet to be developed around the world for specific service purposes through various R&BD projects. Basically, V2G returns power stored in vehicle at a cheaper or unused time to the grid at more expensive or highly peaked time, and is accordingly supposed to provide such roles like peak shaving or load levelling according to customer load curve, frequency regulation or ancillary reserves, and balancing power fluctuation to grid from the weather-sensitive renewable sources like wind or solar generations. However, it has recently been debated over its prominent usage as diffusing EVs and the required charging/discharging infrastructure, partially for its addition of EV ownership costs with more frequent charging/discharging events and user inconvenience with a relative long-time participation in the previously engaged V2G program. This study suggests that a Korean DR (Demand Response) service integrated V2G system especially based upon a dynamic charge/pause/discharge scheme newly proposed to ISO/IEC 15118 rev. 2 can deal with these concerns with more profitable business model, while fully making up for the additional component (ex. battery) and service costs. It also indicates that the optimum economic, environmental, and grid impacts can be simulated for this V2G-DR service particularly designed for EV aggregators (V2G service providers) by proposing a specific V2G engagement program for the mediated DR service providers and the distributed EV owners.

Optimal installation of electric vehicle charging stations connected with rooftop photovoltaic (PV) systems: a case study

  • Heo, Jae;Chang, Soowon
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.937-944
    • /
    • 2022
  • Electric vehicles (EVs) have been growing to reduce energy consumption and greenhouse gas (GHG) emissions in the transportation sector. The increasing number of EVs requires adequate recharging infrastructure, and at the same time, adopts low- or zero-emission electricity production because the GHG emissions are highly dependent on primary sources of electricity production. Although previous research has studied solar photovoltaic (PV) -integrated EV charging stations, it is challenging to optimize spatial areas between where the charging stations are required and where the renewable energy sources (i.e., solar photovoltaic (PV)) are accessible. Therefore, the primary objective of this research is to support decisions of siting EV charging stations using a spatial data clustering method integrated with Geographic Information System (GIS). This research explores spatial relationships of PV power outputs (i.e., supply) and traffic flow (i.e., demand) and tests a community in the state of Indiana, USA for optimal sitting of EV charging stations. Under the assumption that EV charging stations should be placed where the potential electricity production and traffic flow are high to match supply and demand, this research identified three areas for installing EV charging stations powered by rooftop PV in the study area. The proposed strategies will drive the transition of existing energy infrastructure into decentralized power systems. This research will ultimately contribute to enhancing economic efficiency and environmental sustainability by enabling significant reductions in electricity distribution loss and GHG emissions driven by transportation energy.

  • PDF

Durability Analysis on the Prototype of a Korean Light Tactical Vehicle (한국형 소형전술 시제차량의 내구성능 평가)

  • Suh, Kwonhee;Yu, Myeongkwang;Lim, Mintaek;Jeong, Chanman
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.3
    • /
    • pp.148-156
    • /
    • 2013
  • Since the demand for new military vehicle to fulfill the necessary conditions such as multi-purpose, high-mobility, and survivability has raised continuously from the army, the prototype of a Korean light tactical vehicle was developed to meet these requirements using our own technology. In particular, the new tactical vehicle was equipped with a double wishbone independent suspension to improve ride and handling and maximize off-road driving performance. In this paper, a comprehensive virtual durability process to evaluate the service life of the prototype is presented. A reliability of the trimmed body model based on CATIA data was verified by comparison result between mode analysis and modal test. The dynamic model was constructed using ADAMS/Car, and then the weight distribution and lateral slope driving performance of it were compared with the results of static weight and lateral slope tests. The validity of the VTL(Virtual Test Lab) was checked with test results from the 3-inch spaced impact road. The durability performances of trimmed body and suspension components were evaluated through MSM(Modal Superposition Method) fatigue analysis. It is shown that the virtual durability process could be a helpful tool to find out the weak areas and improve their structures in developing new military vehicle.

Investigating the Impacts of Different Price-Based Demand Response Programs on Home Load Management

  • Rastegar, Mohammad;Fotuhi-Firuzabad, Mahmud;Choi, Jaeseok
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.1125-1131
    • /
    • 2014
  • Application of residential demand response (DR) programs are currently realized up to a limited extent due to customers' difficulty in manually responding to the time-differentiated prices. As a solution, this paper proposes an automatic home load management (HLM) framework to achieve the household minimum payment as well as meet the operational constraints to provide customer's comfort. The projected HLM method controls on/off statuses of responsive appliances and the charging/discharging periods of plug-in hybrid electric vehicle (PHEV) and battery storage at home. This paper also studies the impacts of different time-varying tariffs, i.e., time of use (TOU), real time pricing (RTP), and inclining block rate (IBR), on the home load management (HLM). The study is effectuated in a smart home with electrical appliances, a PHEV, and a storage system. The simulation results are presented to demonstrate the effectiveness of the proposed HLM program. Peak of household load demand along with the customer payment costs are reported as the consequence of applying different pricings models in HLM.

A Research on the Vehicle Routing Problem in the Disaster Scene (재난 현장의 구호 자원 운송 차량 경로에 관한 연구)

  • Han, Sumin;Jeong, Hanil;Kim, Kidong;Park, Jinwoo
    • Korean Management Science Review
    • /
    • v.33 no.1
    • /
    • pp.101-117
    • /
    • 2016
  • In 2000s, incidence of natural disaster is increasing continuously. Therefore, the necessity of research on the effective disaster response is emphasized. Korea is not safe from natural disaster. Natural disasters like torrential downpours, typhoons have occurred more frequently than before. In addition disasters like droughts and MERS has also occurred. Therefore, needs for effective systems and algorithms to respond disaster are increased. This study covers the vehicle routing problem for effective logistics in disaster situations caused by natural disasters. The emergency vehicle route problem has different property from the general vehicle route problem. It has the property of the importance of deadline, the uncertain and dynamic demand information, and the uncertainty in information transfer. In this study, a solution that focused on the importance of deadline. In this study, the heuristic solution using the genetic algorithm are suggested. Finally the simulation experiment which reflects the actual environment are conducted to verify the performance of the solution.

Smart EVs Charging Scheme for Load Leveling Considering ToU Price and Actual Data

  • Kim, Jun-Hyeok;Kim, Chul-Hwan
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.1-10
    • /
    • 2017
  • With the current global need for eco-friendly energies, the large scale use of Electric Vehicles (EVs) is predicted. However, the need to frequently charge EVs to an electrical power system involves risks such as rapid increase of demand power. Therefore, in this paper, we propose a practical smart EV charging scheme considering a Time-of-Use (ToU) price to prevent the rapid increase of demand power and provide load leveling function. For a more practical analysis, we conduct simulations based on the actual distribution system and driving patterns in the Republic of Korea. Results show that the proposed method provides a proper load leveling function while preventing a rapid increase of demand power of the system.

Study on the Power-Grid Impact and Optimal Charging Control Strategy with PHEV Market Penetration (PHEV 시장 형성 시 전력망에 미치는 영향 및 최적 충전 제어 전략에 관한 연구)

  • Roh, Chul-Woo;Kim, Min-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.4
    • /
    • pp.278-287
    • /
    • 2009
  • Plug-in hybrid electric vehicle (PHEV) with capability of being recharged from the power-grid will reduce oil consumption. Also, the PHEV will affect the utility operations by adding additional electricity demand for charging. In this research, the power-grid impact by demand of PHEV charging is presented and the optimal charging control strategy for utility operators is proposed with simulated data. The penetration of PHEV is assumed to be 50% in the circumstances of Korean passenger car market and Korean power-grid market limitedly. To obtain smooth load shape and utilize the surplus electricity in power-grid at midnight and dawn, the peak of charging demand should be controlled to be located before 4:00 a.m., and the time slot which can supply the electricity power to PHEV should be allowed between 1:00 a.m.$\sim$7:00 a.m.

Task offloading under deterministic demand for vehicular edge computing

  • Haotian Li ;Xujie Li ;Fei Shen
    • ETRI Journal
    • /
    • v.45 no.4
    • /
    • pp.627-635
    • /
    • 2023
  • In vehicular edge computing (VEC) networks, the rapid expansion of intelligent transportation and the corresponding enormous numbers of tasks bring stringent requirements on timely task offloading. However, many tasks typically appear within a short period rather than arriving simultaneously, which makes it difficult to realize effective and efficient resource scheduling. In addition, some key information about tasks could be learned due to the regular data collection and uploading processes of sensors, which may contribute to developing effective offloading strategies. Thus, in this paper, we propose a model that considers the deterministic demand of multiple tasks. It is possible to generate effective resource reservations or early preparation decisions in offloading strategies if some feature information of the deterministic demand can be obtained in advance. We formulate our scenario as a 0-1 programming problem to minimize the average delay of tasks and transform it into a convex form. Finally, we proposed an efficient optimal offloading algorithm that uses the interior point method. Simulation results demonstrate that the proposed algorithm has great advantages in optimizing offloading utility.

Change in Road Traffic Demand after the Operation of Exclusive Median Bus Lane in Seoul (서울시 중앙버스전용차로 시행에 따른 도로교통 수요 변화)

  • Yoon, Byoung-Jo
    • International Journal of Highway Engineering
    • /
    • v.10 no.3
    • /
    • pp.139-147
    • /
    • 2008
  • 8 Exclusive Median Bus Lanes(EMBL) are operated in Seoul metropolitan city after the opening of Chon-ho section in 1996. But the changes in the road traffic demand on the direct and indirect influence area have not reported. In this paper, before and after survey and analysis of road traffic demand on 3 EMBLs opened in 2004 are conducted. In summary, the traffic demand of 3 EMBL road section decreased dramatically to 24.7% after the opening and then increased 1.4% after a year. The traffic demand of detour road decreased to 2.9% after the opening and then increased 0.3% after a year. Considering measurement error as ${\pm}5%$, Road traffic demands on the influence area of EMBL section are a stable state after one year. So it is presumed that the trip demand on EMBL section using vehicle does not make a detour around the influence area but divert into another transport modal.

  • PDF