• Title/Summary/Keyword: On-axis

Search Result 6,809, Processing Time 0.035 seconds

Optimal Motion Control of 3-axis SCARA Robot Using a Finite Jerk and Gain Tuning Based on $LabVIEW^{(R)}$ ($LabVIEW^{(R)}$ 기반 3축 스카라 로봇의 유한 저크 및 게인 동조를 이용한 최적 모션 제어)

  • Kim, J.H.;Chung, W.J.;Kim, H.G.;Lee, G.S.
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.3
    • /
    • pp.40-46
    • /
    • 2008
  • This paper presents the optimal motion control for 3-axis SCARA robot by using $LabVIEW^{(R)}$. Specifically, for optimal motion control of 3-axis SCARA robot, we study velocity profile based on finite jerk(the first derivative of acceleration) and optimal gain tunig based on frequency response method by using $LabVIEW^{(R)}$. The velocity optimization with finite jerk aims at generating the smooth velocity profile of robot. Velocity profile based on finite jerk is acquired and applied to 3-axis SCARA robot by using $LabVIEW^{(R)}$. DSA(Dynamic Signal Analyzer) for frequency response method is programed by using $LabVIEW^{(R)}$. We obtain the bode plot of transfer function about 3-axis SCARA robot by using DSA, and perform the gain tuning considering dynamic characteristic based on the bode plot. These experiments have shown that the proposed motion control can reduce vibration displacement and response error rate each 33.7% and 51.7% of 3-axis SCARA robot.

The Study on 3-Axes Acceleration Impact of Lower Limbs Joint during Gait (보행 시 하지 관절의 3축 충격가속도에 관한 연구)

  • Oh, Yeon-Ju;Lee, Chang-Min
    • Journal of the Ergonomics Society of Korea
    • /
    • v.28 no.3
    • /
    • pp.33-39
    • /
    • 2009
  • Impact force to a body during walking depends on walking speed, walking steps, the condition of the floors and shoes, and weight. The ground reaction force and the foot pressure can be measured instantaneous force easily, but it's difficult to find out the amount of transferring forces to the body. On the other hand, the acceleration has an advantage for analyzing the amount of transferring forces. However, most of studies about impact forces to the ground reaction during exercise have been limited to analyze instantaneous forces. The important thing is to evaluate characters and the amount of the impact force rather than the magnitude. Therefore, this study analyze the impact force using 3 axis acceleration in three dimensions (x; anterior-posterior, y; left-right and z; longitudinal axis) using three axis acceleration. As working speed increased, impact forces increased significantly. Impact forces on x axis and z axis are higher at lower limb than that of upper limb. However, impact force at the knee is higher than that of other parts on y axis regardless of walking speed significantly. In addition, relations of the impact forces as interaction of experiment factors as well as effect of each factor are analyzed.

A 4-axis NC Lettering System for the Side-wall of the Automobile Tire (타이어 사이드판의 문자 가공을 위한 4축 가공 시스템)

  • Lee, Cheol-Soo;Park, Gwang-Ryeol
    • IE interfaces
    • /
    • v.11 no.2
    • /
    • pp.65-78
    • /
    • 1998
  • The letters of the automobile tire are usually engraved on the side-wall. The shape of the side-wall is a sculptured surface generated by the rotational sweeping of a profile curve. The letters laid on the side-wall are usually designed by a 2-dimensional CAD. It is impossible to machine the letters on the surface accurately by 3-axis NC machining, because the axis of cutter should be tilted to align with the normal vector of the surface. In this case. the degree of freedom for the machine is at least four. This paper describes an idea for tool path generation of a 4-axis machine by using the 2-dimensional CAD data of the letters and the surface of the side-wall. This study includes the following procedures; (1) measuring the profile of the side-wall surface and curve-fitting of the measured points. (2) the 'non-parallel projection' of the letters on the side-wall, and (3) an inverse kinematics of the 4-axis lettering machine. Procedures in this paper are programmed in C-language on Windows95 environment. With a PC based CNC controller and a 4-axis lettering machine. these are tested sucessfully for the practical use.

  • PDF

Influence of the anterior arch shape and root position on root angulation in the maxillary esthetic area

  • Petaibunlue, Suweera;Serichetaphongse, Pravej;Pimkhaokham, Atiphan
    • Imaging Science in Dentistry
    • /
    • v.49 no.2
    • /
    • pp.123-130
    • /
    • 2019
  • Purpose: This study was conducted to characterize the relationship of the angulation between the tooth root axis and alveolar bone axis with anterior alveolar(AA) arch forms and sagittal root position (SRP) in the anterior esthetic region using cone-beam computed tomography (CBCT) images. Materials and Methods: CBCT images that met the inclusion and exclusion criteria were categorized using a recent classification of AA arch forms and a SRP classification. Then, the angulation of the root axis and the alveolar bone axis was measured using mid-sagittal CBCT images of each tooth. The relationships of the angulation with each AA arch form and SRP classification were evaluated using 1-way analysis of variance and a linear regression model. Results: Ninety-eight CBCT images were included in this study. SRP had a greater influence than the AA arch form on the angulation of the root axis and the alveolar bone axis(P<0.05). However, the combination of AA arch form and SRP was more predictive of the angulation of the root axis and the alveolar bone axis than either parameter individually. Conclusion: The angulation of the root axis and alveolar bone axis demonstrated a relationship with the AA arch form and SRP in teeth in the anterior esthetic region. The influence of SRP was greater, but the combination of both parameters was more predictive of root-to-bone angulation than either parameter individually, implying that clinicians should account for both the AA arch form and SRP when planning implant placement procedures in this region.

Tension-Compression Asymmetry in the Off-Axis Nonlinear Rate-Dependent Behavior of a Unidirectional Carbon/Epoxy Laminate at High Temperature and Incorporation into Viscoplasticity Modeling

  • Kawai, M.;Zhang, J.Q.;Saito, S.;Xiao, Y.;Hatta, H.
    • Advanced Composite Materials
    • /
    • v.18 no.3
    • /
    • pp.265-285
    • /
    • 2009
  • Off-axis compressive deformation behavior of a unidirectional CFRP laminate at high temperature and its strain-rate dependence in a quasi-static range are examined for various fiber orientations. By comparing the off-axis compressive and tensile behaviors at an equal strain rate, the effect of different loading modes on the flow stress level, rate-dependence and nonlinearity of the off-axis inelastic deformation is elucidated. The experimental results indicate that the compressive flow stress levels for relatively larger off-axis angles of $30^{\circ}$, $45^{\circ}$ and $90^{\circ}$ are about 50 percent larger than in tension for the same fiber orientations, respectively. The nonlinear deformations under off-axis tensile and compressive loading conditions exhibit significant strain-rate dependence. Similar features are observed in the fiber-orientation dependence of the off-axis flow stress levels under tension and compression and in the off-axis flow stress differential in tension and compression, regardless of the strain rate. A phenomenological theory of viscoplasticity is then developed which can describe the tension-compression asymmetry as well as the rate dependence, nonlinearity and fiber orientation dependence of the off-axis tensile and compressive behaviors of unidirectional composites in a unified manner. It is demonstrated by comparing with experimental results that the proposed viscoplastic constitutive model can be applied with reasonable accuracy to predict the different, nonlinear and rate-dependent behaviors of the unidirectional composite under off-axis tensile and compressive loading conditions.

Effect of Load Variation on Transition of Neutral Axis of Laminated Veneer Lumber (LVL) (하중(荷重) 변화(變化)가 적층목질재(積層木質材)(Glulam)의 중립축(中立軸)의 위치변이(位置變移)에 미치는 영향(影響))

  • Park, Heon;An, Tae-Hwan
    • Journal of the Korean Wood Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.35-44
    • /
    • 1991
  • In this study, thickness 40mm glulams were composed of thickness 5mm, 10mm Quercus laminas and Pinus koraiensis laminas to study on the effect of load variation on transition of neutral axis of laminated veneer lumber(LVL). The transition of neutral axis was examined by strain variation, which was checked by strain gauge. amplifier, recorder, and strain meter. The elasticity of glulam was estimated by E = $\Sigma(E_i\;I_ i)$/I and this estimated elasticity values were compared with the elasticity values of glulam in bending. The result obtained can be summarized as follows: 1. The location of neutral axis of glulam was effected by glulam composition methods 2. The neutral axis did not shift by load variation within proportional limit. 3. The estimated elasticity of glulam by E = $\Sigma(E_i\;I_ i)$/I showed much lower value than the elasticity of glulam in bending.

  • PDF

Determining Machinability and Setup Orientation for Five-axis NC Machining of Free Surfaces (머신 컨피규레이션에 따른 자유곡면의 5 축 가공성과 셋업 자세)

  • Kang, Jae-Kwan;Suh, Suk-Hwan
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.21 no.1
    • /
    • pp.67-84
    • /
    • 1995
  • Five-axis NC machining is advanced machining technology by which highly geometrically complicated parts can be machined accurately with high machinability. In this paper, we investigate the problems of determining the machinability and part setup orientation for a given surface models. We first develop kinematic model of the five-axis machines based on the axis configuration, then develop algorithms for determining the feasibility of machining by one setup(machinability) and the part orientation for the C,A and A,B type configuration. The machinability is determined by computationally efficient procedure for finding the intersection between the feasible area on the sphere and the numerical map called binary spherical map(BSM), and the part setup is chosen such that the rotational range is minimized among the feasible configurations. The developed algorithms are tested by numerical simulations, convincing they can be readily implemented on the CAD/CAM system as an automated process planner giving the efficient machine type and setup for NC machining.

  • PDF

A Multi-Axis Contour Error Controller for High-Speed/High-Precision Machining of Free form Curves (고속 고정밀의 자유곡선 가공을 위한 다축 윤곽오차 제어)

  • 이명훈;최정희;이영문;양승한
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.4
    • /
    • pp.64-71
    • /
    • 2004
  • The growing need for higher precision and productivity in manufacturing industry has lead to an increased interest in computer numerical control (CNC) systems. It is well known fact that the cross-coupling controller (CCC) is an effective method for contouring applications. In this paper, a multi-axis contour error controller (CEC) based on a contour error vector using parametric curve interpolator is introduced. The contour error vector is a vector from the actual tool position to the nearest point on the desired path. The contour error vector is the closest error model to the contour error. The simulation results show that the CEC is more accurate than the conventional CCC for a biaxial motion system. In addition, the experimental results on 3-axis motion system show that the CEC is simply applied to 3-axis motions and contouring accuracy is significantly improved.

2-axis tracking control of servo system with two-degree-of-freedom (2자유도를 갖는 서보 시스템의 2축 추적제어)

  • 이제희;박호준;허욱열
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.844-847
    • /
    • 1996
  • This paper describes the servo position control for the 2-axis positioning table the servo controller consists of conventional feedback loops, disturbance observer. To reduce the contour error, which occurs in the multi-dimensions machines, cross-coupled controller(CCC) is suggested. A weak point of the CCC is their low effectiveness in dealing with arbitrary nonlinear contour such as circles and parabolas. This paper introduces a new nonlinear CCC that is based on control gains that vary during the contour movement The gains of CCC and adjusted in real time according to the shape of nonlinear contour. The feedback controller based on the disturbance observer compensated for external disturbance, plant uncertainty and bad effectiveness by friction model. Suggested servo controller which improve the contouring accuracy, apply to the 2-axis system. Simulation results on 2-axis table verify the effectiveness of the proposed servo controller.

  • PDF

Rough Cut Tool Path Planning in Fewer-axis CNC Machinig (저축 CNC 환경에서의 황삭가공)

  • 강지훈;서석환;이정재
    • Korean Journal of Computational Design and Engineering
    • /
    • v.2 no.1
    • /
    • pp.19-27
    • /
    • 1997
  • This paper presents rough cut tool path planning for the fewer-axis machine consisting of a three-axis CNC machine and a rotary indexing table. In the problem dealt with in this paper, the tool orientation is "intermediately" changed, distinguished from the conventional problem where the tool orientation is assumed to be fixed. The developed rough cut path planning algorithm tries to minimize the number of tool orientation (setup) changes together with tool changes and the machining time for the rough cut by the four procedures: a) decomposition of the machining area based on the possibility of tool interference (via convex hull operation), b) determination of the optimal tool size and orientation (via network graph theory and branch-and bound algorithm), c) generation of tool path for the tool and orientation (based on zig-zag pattern), and d) feedrate adjustment to maintain the cutting force at an operation level (based on average cutting force). The developed algorithms are validated via computer simulations, and can be also used in pure fiveaxis machining environment without modification.

  • PDF