• Title/Summary/Keyword: On-axis

Search Result 6,842, Processing Time 0.035 seconds

Comparative Evaluation of Behavior Analysis of Rectangular Jet and Two-dimensional Jet (사각형제트와 2차원제트의 거동해석의 비교 평가)

  • Kwon, Seok Jae;Cho, Hong Yeon;Seo, Il Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6B
    • /
    • pp.641-649
    • /
    • 2006
  • The behavior of a three-dimensional pure rectangular water jet with aspect ratio of 10 was experimentally investigated based on the results of the mean velocity field obtained by PIV. The saddle back distribution was observed in the lateral distribution along the major axis. The theoretical centerline velocity equation derived from the point source concept using the spreading rate for the axisymmetric jet was in good agreement with the measured centerline velocity and gave the division of the potential core region, two-dimensional region, and axisymmetric region. The range of the two-dimensional region divided by the criterion of the theoretical centerline velocity decay for the aspect ratio of 10 was observed to be smaller than that of the transition region. The applicability of the two-dimensional model to the behavior of the rectangular jet with low aspect ratio or the wastewater discharged from a multiport diffuser in the deep water of real ocean may result in significant error in the transition and axisymmetric regions after the two-dimensional region. In the two-dimensional region, the Gaussian constant tended to be conserved, and the spreading rate slightly decreased at the end of the two-dimensional region. The normalized turbulent intensity along the centerline of the jet initially abruptly increased and showed relatively higher intensity for higher Reynolds number.

Evaluation of bonding state of shotcrete lining using nondestructive testing methods - experimental analysis (비파괴 시험 기법을 이용한 숏크리트 배면 접착상태 평가에 관한 실험적 연구)

  • Song, Ki-Il;Cho, Gye-Chun;Chang, Seok-Bue;Hong, Eun-Soo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.11 no.1
    • /
    • pp.71-83
    • /
    • 2009
  • Shotcrete is an important primary support for tunnelling in rock. The quality control of shotcrete is a core issue in the safe construction and maintenance of tunnels. Although shotcrete may be applied well initially onto excavated rock surfaces, it is affected by blasting, rock deformation and shrinkage and can debond from the excavated surface, causing problems such as corrosion, buckling, fracturing and the creation of internal voids. This study suggests an effective non-destructive evaluation method of the tunnel shotcrete bonding state applied onto hard rocks using the impact-echo (IE) method and ground penetration radar (GPR). To verify previous numerical simulation results, experimental study carried out. Generally, the bonding state of shotcrete can be classified into void, debonded, and fully bonded. In the laboratory, three different bonding conditions were modeled. The signals obtained from the experimental IE tests were analyzed at the time domain, frequency domain, and time-frequency domain (i.e., the Short- Time Fourier transform). For all cases in the analyses, the experimental test results were in good agreement with the previous numerical simulation results, verifying this approach. Both the numerical and experimental results suggest that the bonding state of shotcrete can be evaluated through changes in the resonance frequency and geometric damping ratio in a frequency domain analysis, and through changes in the contour shape and correlation coefficient in a time-frequency analysis: as the bonding state worsens in hard rock condition, the autospectral density increases, the geometric damping ratio decreases, and the contour shape in the time-frequency domain has a long tail parallel to the time axis. The correlation coefficient can be effectively applied for a quantitative evaluation of bonding state of tunnel shotcrete. Finally, the bonding state of shotcrete can be successfully evaluated based on the process suggested in this study.

Numerical Analysis of Collapse Behavior in Industrial Stack Explosive Demolition (산업용 연돌 발파해체에서 붕괴거동에 관한 수치해석적 연구)

  • Pu-Reun Jeon;Gyeong-Jo Min;Daisuke Fukuda;Hoon Park;Chul-Gi Suk;Tae-Hyeob Song;Kyong-Pil Jang;Sang-Ho Cho
    • Explosives and Blasting
    • /
    • v.41 no.3
    • /
    • pp.62-72
    • /
    • 2023
  • The aging of plant structures due to industrialization in the 1970s has increased the demand for blast demolition. While blasting can reduce exposure to environmental pollution by shortening the demolition period, improper blasting design and construction plans pose significant safety risks. Thus, it is vital to consider optimal blasting demolition conditions and other factors through collapse behavior simulation. This study utilizes a 3-D combined finite-discrete element method (FDEM) code-based 3-D DFPA to simulate the collapse of a chimney structure in a thermal power plant in Seocheon, South Korea. The collapse behavior from the numerical simulation is compared to the actual structure collapse, and the numerical simulation result presents good agreement with the actual building demolition. Additionally, various numerical simulations have been conducted on the chimney models to analyze the impact of the duct size in the pre-weakening area. The no-duct, duct, and double-area duct models were compared in terms of crack pattern and history of Z-axis displacement. The findings show that the elapse-time for demolition decreases as the area of the duct increases, causing collapse to occur quickly by increasing the load-bearing area.

Failure Envelope of Suction Caisson Foundations in Clay Subjected to Combined Loads (점성토 지반에 시공된 석션 케이슨 기초의 파괴포락선 산정)

  • Kang, Sangwook;Lee, Donghyun;Jung, Donghyuk;Han, Taek Hee;Ahn, Jaehun
    • Journal of the Korean Geotechnical Society
    • /
    • v.40 no.2
    • /
    • pp.95-103
    • /
    • 2024
  • The global increase in population and subsequent scarcity of terrestrial living spaces necessitates exploration of alternative habitats. Research into the development of underwater living areas provides promising avenues for the expansion of human living spaces and the use of marine environments. This study focuses on the failure envelope of suction caisson foundations subjected to combined loads in a marine setting, utilizing finite element analysis. The foundation is assumed to be embedded in clay characterized by a linear increase in undrained shear strength with depth, employing the von Mises constitutive model for the clay. The resulting failure envelope is represented as a tilted ellipse which expands as the undrained shear strength increases, maintaining a constant ratio between the major and minor axes. A comparative analysis of two suction caisson foundations with varying length-to-diameter ratios revealed that this ratio influences the dimensions of the failure envelope, with a tendency for the major-to-minor axis ratio to increase as the length-to-diameter ratio increases. These findings are critical for the design of suction caisson foundations in offshore environments.

The Role of SDF-1𝛼-CXCR4/CXCR7 in Migration of Human Periodontal Ligament Stem Cells

  • Jialei Xu;Fan Yang;Shuhan Luo;Yuan Gao;Dingming Huang;Lan Zhang
    • International Journal of Stem Cells
    • /
    • v.16 no.2
    • /
    • pp.180-190
    • /
    • 2023
  • Background and Objectives: Regenerative endodontic procedures (REPs) are a research hotspot in the endodontic field. One of the biggest problems of REPs is that it is difficult to realize regeneration of pulp-dentin complex and functional reconstruction. The reason is still not clear. We hypothesize that the migration may be different in different dental stem cells. Periodontal ligament stem cells (PDLSCs) may migrate faster than stem cells of apical papilla (SCAPs), differentiating into cementum-like tissue, bone-like tissue and periodontal ligament-like tissue and, finally affecting the outcomes of REPs. Hence, this study aimed to explore the mechanism that regulates the migration of PDLSCs. Methods and Results: After isolating and culturing PDLSCs and SCAPs from human third molars, we compared the migration of PDLSCs and SCAPs. Then we investigated the role of SDF-1𝛼-CXCR4/CXCR7 axis in PDLSC migration. We further investigated the impact of Porphyromonas gingivalis (P. gingivalis) lipopolysaccharide (LPS) on PDLSC migration and the potential mechanism. PDLSCs showed better migration under both noninflammatory and inflammatory conditions than SCAPs. SDF-1𝛼 can promote the migration of PDLSCs by elevating the expression of CXCR4 and CXCR7, increasing the interaction between them, promoting expression of 𝛽-arrestin1 and activating the ERK signaling pathway. P. gingivalis LPS can promote the migration of PDLSCs toward SDF-1𝛼 through increasing the expression of CXCR4 via the NF-𝜅B signaling pathway, promoting the expression of 𝛽-arrestin1, and activating the ERK signaling pathway. Conclusions: This study helped elucidate the potential reason for the difficulty in forming pulp-dentin complex.

A Study on Property Distribution of [011] Poled Mn:PIN-PMN-PT Single Crystals Grown by Bridgeman Method (Bridgeman 성장 [011] 분극 Mn:PIN-PMN-PT 압전단결정의 물성 분포 연구)

  • Soohyun Lim;Yub Je;Yohan Cho;Sang-Goo Lee;Hee-Seon Seo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.4
    • /
    • pp.412-419
    • /
    • 2024
  • Mn-doped Pb(In1/2Nb1/2)O3-Pb(Mg2/3Nb1/3)O3-PbTiO3 (Mn:PIN-PMN-PT) single crystals, which exhibit improved phase transition temperatures and coercive field properties compared to Pb(In1/2Nb1/2)O3-Pb(Mg2/3Nb1/3)O3-PbTiO3 (PIN-PMN-PT) single crystals, are expected to be utilized in high-power acoustic transducers. Bridgeman method, growing single crystals along the axial direction from melt, is most widely used method for single crystal growth with large size and high quality. However, single crystal boules grown by the Bridgeman method demonstrate a PT compositional variation, giving rise a distribution of crystal structure and material properties along the growing axis. To employ piezoelectric single crystals grown by the Bridgeman method for acoustic transducers, it is essential to investigate their overall property distribution. In this study, the compositional distribution and property variation of Mn:PIN-PMN-PT single crystals grown by the Bridgeman method was investigated. Measured compositional distribution of PT was from 29% to 32.5% in the Rhombohedral crystal region of the boule. Two types of specimen, [011]-poled Mn:PIN-PMN-29PT and Mn:PIN-PMN-32PT single crystals, were fabricated and tested to obtain full property variation at both ends of the Rhombohedral crystal region. The properties related to the 32 directional vibration mode and the properties related to high-power driving were measured to confirm the overall distribution of properties by composition.

Specific Alternation of Gut Microbiota and the Role of Ruminococcus gnavus in the Development of Diabetic Nephropathy

  • Jinni Hong;Tingting Fu;Weizhen Liu;Yu Du;Junmin Bu;Guojian Wei;Miao Yu;Yanshan Lin;Cunyun Min;Datao Lin
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.3
    • /
    • pp.547-561
    • /
    • 2024
  • In this study, we aim to investigate the precise alterations in the gut microbiota during the onset and advancement of diabetic nephropathy (DN) and examine the impact of Ruminococcus gnavus (R. gnavus) on DN. Eight-week-old male KK-Ay mice were administered antibiotic cocktails for a duration of two weeks, followed by oral administration of R. gnavus for an additional eight weeks. Our study revealed significant changes in the gut microbiota during both the initiation and progression of DN. Specifically, we observed a notable increase in the abundance of Clostridia at the class level, higher levels of Lachnospirales and Oscillospirales at the order level, and a marked decrease in Clostridia_UCG-014 in DN group. Additionally, there was a significant increase in the abundance of Lachnospiraceae, Oscillospiraceae, and Ruminococcaceae at the family level. Moreover, oral administration of R. gnavus effectively aggravated kidney pathology in DN mice, accompanied by elevated levels of urea nitrogen (UN), creatinine (Cr), and urine protein. Furthermore, R. gnavus administration resulted in down-regulation of tight junction proteins such as Claudin-1, Occludin, and ZO-1, as well as increased levels of uremic toxins in urine and serum samples. Additionally, our study demonstrated that orally administered R. gnavus up-regulated the expression of inflammatory factors, including nucleotide-binding oligomerization domain-like receptor pyrin domain-containing protein 3 (NLRP3) and Interleukin (IL)-6. These changes indicated the involvement of the gut-kidney axis in DN, and R. gnavus may worsen diabetic nephropathy by affecting uremic toxin levels and promoting inflammation in DN.

Simulation and analysis of the effects of bistatic sonar detection performance induced by reverberation in the East Sea (동해 심해환경에서 잔향음에 의한 양상태 탐지성능 영향 모의 및 분석)

  • Wonjun Yang;Dae Hyeok Lee;Ji Seop Kim;Hoseok Sul;Su-Uk Son;Hyuckjong Kwon;Jee Woong Choi
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.4
    • /
    • pp.445-454
    • /
    • 2024
  • To detect underwater targets using sonar, sonar performance analysis that reflects the ocean environment and sonar characteristics must be performed. Sonar performance modeling of passive and monostatic sonar can be performed relatively quickly even considering the ocean environment. However, since bistatic and multistatic sonar performance modeling require higher computational complexity and much more time than passive or monostatic sonar cases, they have been performed by simplifying or not considering the ocean environment. In thisstudy, the effects of reverberation and ocean environment in bistatic sonar performance were analyzed using the bistatic reverberation modeling in the Ulleung Basin of the East Sea. As the sonar operation depth approaches the sound channel axis, the influence of the bathymetry on sound propagation is reduced, and the reverberation limited environment is formed only at short distances. Finally, it was confirmed that similar trends appeared through comparison between the simplified and elaborately calculated sonar performance modeling results.

A Study on the Characteristic of Ship`s Magnetic Distribution of M. S. KAYA by the Varies of Artificial Local Disturbance (인위적 지방자기 변동에 의한 가야호의 선체자기 분포특성에 관한 연구)

  • 조현정
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.34 no.2
    • /
    • pp.144-158
    • /
    • 1998
  • In order to study basic information on the developed electro-magnetic compass, experiments were carried out on board M. S. KAYA at the pier of Dong Kuk Steel Mill in Pusan and the Korean southern sea using a three-axis magnetic sensor from Jan. 21, 1995 to Feb. 14, 1996. The obtained results were as follows : 1. The amount of old metal on the pier was about 27,290tons~57,440tons with an average of 40,560tons, the artificial local disturbance at the pier was min. 27.1$\mu$T, max. 66.5$\mu$T, ave. 433$\mu$T for the horizontal component and min. -27.0$\mu$T, max. 45.1$\mu$T, ave. 3.7$\mu$T for the vertical component. Its direction of horizontal component was 305$^{\circ}$ with the ship's head up bearing at 225$^{\circ}$. 2. The ship's magnetic distribution on the starboard side on berthing at the pier was 17.4$\mu$T for the horizontal component and -6.2$\mu$T for the vertical component. On the ship's port side, it was 19.8$\mu$T for the horizontal component and 4.1$\mu$T for the vertical component. On the ship's starboard side at sea, the ship's magnetic distribution was 19.2$\mu$T for the horizontal component and 3.2$\mu$T for the vertical component. On the ship's port side, the readings were 22.0$\mu$T for the horizontal component and -1.8$\mu$T for the vertical component. The directions of these readings were nearly starboard side. 3. On the pier, the secular change of the artificial local disturbance decreased 8.3$\mu$T from 61.0$\mu$T to 52.7$\mu$T for the horizontal component and decreased 7.1$\mu$T from 8.9$\mu$T M 1.8$\mu$T for the vertical component. On the starboard side from its berth, the ship, s magnetic distribution increased 2.6$\mu$T from 14.8$\mu$T to 17.4$\mu$T for the horizontal component and increased -0.1$\mu$T from -6.1$\mu$T to -6.2$\mu$T for the vertical component. On the ship's port side from its berth, it increased 7.1$\mu$T from 12.7$\mu$T to 19.8$\mu$T for the horizontal component and increased 10.2$\mu$T from -6.1$\mu$T to 4.1$\mu$T for the vertical component. 4. While at sea, on the ship's starboard side, the Secular change of the ship's magnetic distribution increased 3.9$\mu$T from 15.3$\mu$T to 19.2$\mu$T for the horizontal component and increased 2.0$\mu$T from -5.2$\mu$T to -3.2$\mu$T for the vertical component. On the port side, the changes increased 11.4$\mu$T from 10.6$\mu$T to 22.0$\mu$T for the horizontal component and increased 4.9$\mu$T from -6.7$\mu$T to -1.8$\mu$T for the vertical component. Upon berthing at the pier, the deviation of the secular change increased westerly 1 degree W~ 2.5$^{\circ}$ W from 3.5$^{\circ}$ W~ 5$^{\circ}$ W M 6W with the ship's head up bearing at 225$^{\circ}$. While at sea, these increased westerly 2$^{\circ}$ ~ 3$^{\circ}$ from the Northeast to the South and increased easterly 1$^{\circ}$ ~ 8$^{\circ}$ from the Southwest to the North. 5. While at port, within 1 mile between the ship and berth of the pier, as we approached the pier, the westerly deviation increased and when we departed the pier easterly deviation increased. When approaching the pier, the deviation was smaller than the deviation when the ship was departing from the pier. When approaching the bearing at 225$^{\circ}$ with the ship's head up bearing, the varies of deviation was smaller than the varies when the ship's head up bearing was departing from it.

  • PDF

Quality Assurance for Intensity Modulated Radiation Therapy (세기조절방사선치료(Intensity Modulated Radiation Therapy; IMRT)의 정도보증(Quality Assurance))

  • Cho Byung Chul;Park Suk Won;Oh Do Hoon;Bae Hoonsik
    • Radiation Oncology Journal
    • /
    • v.19 no.3
    • /
    • pp.275-286
    • /
    • 2001
  • Purpose : To setup procedures of quality assurance (OA) for implementing intensity modulated radiation therapy (IMRT) clinically, report OA procedures peformed for one patient with prostate cancer. Materials and methods : $P^3IMRT$ (ADAC) and linear accelerator (Siemens) with multileaf collimator are used to implement IMRT. At first, the positional accuracy, reproducibility of MLC, and leaf transmission factor were evaluated. RTP commissioning was peformed again to consider small field effect. After RTP recommissioning, a test plan of a C-shaped PTV was made using 9 intensity modulated beams, and the calculated isocenter dose was compared with the measured one in solid water phantom. As a patient-specific IMRT QA, one patient with prostate cancer was planned using 6 beams of total 74 segmented fields. The same beams were used to recalculate dose in a solid water phantom. Dose of these beams were measured with a 0.015 cc micro-ionization chamber, a diode detector, films, and an array detector and compared with calculated one. Results : The positioning accuracy of MLC was about 1 mm, and the reproducibility was around 0.5 mm. For leaf transmission factor for 10 MV photon beams, interleaf leakage was measured $1.9\%$ and midleaf leakage $0.9\%$ relative to $10\times\;cm^2$ open filed. Penumbra measured with film, diode detector, microionization chamber, and conventional 0.125 cc chamber showed that $80\~20\%$ penumbra width measured with a 0.125 cc chamber was 2 mm larger than that of film, which means a 0.125 cc ionization chamber was unacceptable for measuring small field such like 0.5 cm beamlet. After RTP recommissioning, the discrepancy between the measured and calculated dose profile for a small field of $1\times1\;cm^2$ size was less than $2\%$. The isocenter dose of the test plan of C-shaped PTV was measured two times with micro-ionization chamber in solid phantom showed that the errors upto $12\%$ for individual beam, but total dose delivered were agreed with the calculated within $2\%$. The transverse dose distribution measured with EC-L film was agreed with the calculated one in general. The isocenter dose for the patient measured in solid phantom was agreed within $1.5\%$. On-axis dose profiles of each individual beam at the position of the central leaf measured with film and array detector were found that at out-of-the-field region, the calculated dose underestimates about $2\%$, at inside-the-field the measured one was agreed within $3\%$, except some position. Conclusion : It is necessary more tight quality control of MLC for IMRT relative to conventional large field treatment and to develop QA procedures to check intensity pattern more efficiently. At the conclusion, we did setup an appropriate QA procedures for IMRT by a series of verifications including the measurement of absolute dose at the isocenter with a micro-ionization chamber, film dosimetry for verifying intensity pattern, and another measurement with an array detector for comparing off-axis dose profile.

  • PDF