• Title/Summary/Keyword: On-axial defocus

Search Result 3, Processing Time 0.019 seconds

Defocus Study of a Novel Optical Antenna Illuminated by a Radial Radiation Fiber Laser

  • Jiang, Ping;Yang, Huajun;Xie, Kang;Yu, Mingyin;Mao, Shengqian
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.5
    • /
    • pp.485-494
    • /
    • 2014
  • A novel antenna with ellipsoid-paraboloid surfaces configuration is designed for matching the incident radial radiation fiber laser distribution for maximum transmission efficiency. The on-axial and off-axial defocus effects on the optical antenna system, resulting in energy loss, are analyzed in detail. Knowledge of the effects of those defocuses on beam divergence, aberration and antenna transmission efficiency is of great importance to the long range communication systems.

Measurement of the Axial Displacement Error of a Segmented Mirror Using a Fizeau Interferometer (피조 간섭계를 이용한 단일 조각거울 광축방향 변위 오차 측정)

  • Ha-Lim, Jang;Jae-Hyuck, Choi;Jae-Bong, Song;Hagyong, Kihm
    • Korean Journal of Optics and Photonics
    • /
    • v.34 no.1
    • /
    • pp.22-30
    • /
    • 2023
  • The use of segmented mirrors is one of the ways to make the primary mirror of a spaceborne satellite larger, where several small mirrors are combined into a large monolithic mirror. To align multiple segmented mirrors as one large mirror, there must be no discontinuity in the x, y-axis (tilt) and axial alignment error (piston) between adjacent mirrors. When the tilt and piston are removed, we can collect the light in one direction and get an expected clear image. Therefore, we need a precise wavefront sensor that can measure the alignment error of the segmented mirrors in nm scale. The tilt error can be easily detected by the point spread image of the segmented mirrors, while the piston error is hard to detect because of the absence of apparent features, but makes a downgraded image. In this paper we used an optical testing interferometer such as a Fizeau interferometer, which has various advantages when aligning the segmented mirror on the ground, and focused on measuring the axial displacement error of a segmented mirror as the basic research of measuring the piston errors between adjacent mirrors. First, we calculated the relationship between the axial displacement error of the segmented mirror and the surface defocus error of the interferometer and verified the calculated formula through experiments. Using the experimental results, we analyzed the measurement uncertainty and obtained the limitation of the Fizeau interferometer in detecting axial displacement errors.

Phase Only Pupil Filter Design Using Zernike Polynomials

  • Liu, Jiang;Miao, Erlong;Sui, Yongxin;Yang, Huaijiang
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.101-106
    • /
    • 2016
  • A pupil filter is a useful technique for modifying the light intensity distribution near the focus of an optical system to realize depth of field (DOF) extension and superresolution. In this paper, we proposed a new design of the phase only pupil filter by using Zernike polynomials. The effect of design parameters of the new filters on DOF extension and superresolution are discussed, such as defocus Strehl ratio (S.R.), superresolution factor (G) and relative first side lobe intensity (M). In comparison with the other two types of pupil filters, the proposed filter presents its advantages on controlling both the axial and radial light intensity distribution. Finally, defocused imaging simulations are carried out to further demonstrate the effectiveness and superiority of the proposed pupil filter on DOF extension and superresolution in an optical imaging system.