• 제목/요약/키워드: On-Vehicle Information System

검색결과 1,747건 처리시간 0.035초

차량 항법장치의 화면표시형태에 대한 인간공학적 비교 (Comparison of map display styles of vehicle navigation system on human factors)

  • 정범진;백승렬;김기범;박범
    • 대한인간공학회:학술대회논문집
    • /
    • 대한인간공학회 1995년도 추계학술대회논문집
    • /
    • pp.208-213
    • /
    • 1995
  • The vehicle navigation system is developed for helping driver to retrieve driving information more easily and lastly. Navigation System informs driver many pieces of driving information - roadway structure and system, on-line traffic condition, the position of vehicle, route guidance, destination and other infor- mation service. As the style of information is diverse and the amount of information is large, driver may have mental and visual overload. The display of information can disturb the driver's attention and this can cause accidents. This state is caused by the defect of human-machine interactions. When the navigation system is designed, human factors - cognitive, judgment, operating -must be considered. The display style must be designed simply and easily, not to be obstacle of human - machine interface. In this study, outside- in view display style and inside-out view display style are compared each other. Tow factors are measured. One is cognitive factor-time of cognition on information that is displayed by screen display, cognition error rate. The other is image of screen display - subject's feeling about several styles of display, degree of subject's preference. The prototype of roadway is four kinds -Cross, T-cross and O-cross. Roadway display for test is taken from paper maps. Traffic condition display style, vehicle position display style and route guidance display style are taken from current display style. Traffic condition display style is symbol. vehicle position display style and route guidance display style are described as color and symbol. The test on screen display is implemented doing given tasks. Then the test is analyzed statistically. The result of test analysis gives the guideline to the designer for the map display of the vehicle navigation system.

  • PDF

무선 센서 네트워크 기반의 차량 검지 시스템을 위한 교통신호제어 기법 (Traffic Signal Control Scheme for Traffic Detection System based on Wireless Sensor Network)

  • 홍원기;심우석
    • 제어로봇시스템학회논문지
    • /
    • 제18권8호
    • /
    • pp.719-724
    • /
    • 2012
  • A traffic detection system is a device that collects traffic information around an intersection. Most existing traffic detection systems provide very limited traffic information for signal control due to the restriction of vehicle detection area. A signal control scheme determines the transition among signal phases and the time that a phase lasts for. However, the existing signal control scheme do not resolve the traffic congestion effectively since they use restricted traffic information. In this paper, a new traffic detection system with a zone division signal control scheme is proposed to provide correct and detail traffic information and decrease the vehicle's waiting time at the intersection. The traffic detection system obtains traffic information in a way of vehicle-to-roadside communication between vehicles and sensor network. A new signal control scheme is built to exploit the sufficient traffic information provided by the proposed traffic detection system efficiently. Simulation results show that the proposed signal control scheme has 121 % and 56 % lower waiting time and delay time of vehicles at an intersection than other fuzzy signal control scheme.

New Vehicle Verification Scheme for Blind Spot Area Based on Imaging Sensor System

  • Hong, Gwang-Soo;Lee, Jong-Hyeok;Lee, Young-Woon;Kim, Byung-Gyu
    • Journal of Multimedia Information System
    • /
    • 제4권1호
    • /
    • pp.9-18
    • /
    • 2017
  • Ubiquitous computing is a novel paradigm that is rapidly gaining in the scenario of wireless communications and telecommunications for realizing smart world. As rapid development of sensor technology, smart sensor system becomes more popular in automobile or vehicle. In this study, a new vehicle detection mechanism in real-time for blind spot area is proposed based on imaging sensors. To determine the position of other vehicles on the road is important for operation of driver assistance systems (DASs) to increase driving safety. As the result, blind spot detection of vehicles is addressed using an automobile detection algorithm for blind spots. The proposed vehicle verification utilizes the height and angle of a rear-looking vehicle mounted camera. Candidate vehicle information is extracted using adaptive shadow detection based on brightness values of an image of a vehicle area. The vehicle is verified using a training set with Haar-like features of candidate vehicles. Using these processes, moving vehicles can be detected in blind spots. The detection ratio of true vehicles was 91.1% in blind spots based on various experimental results.

Tracking of Multiple Vehicles Using Occlusion Segmentation Based on Spatio-Temporal Association

  • Lim, Jun-Sik;Kim, Soo-Hyung;Lee, Guee-Sang;Yang, Hyung-Jeong;Na, In-Seop
    • International Journal of Contents
    • /
    • 제7권4호
    • /
    • pp.19-23
    • /
    • 2011
  • This paper proposes a segmentation method for overlapped vehicles based on analysis of the vehicle location and the spatiotemporal association information. This method can be used in an intelligent transport system. In the proposed method, occlusion is detected by analyzing the association information based on a vehicle's location in continuous images, and occlusion segmentation is carried out by using the vehicle information prior to occlusion. In addition, the size variations of the vehicle to which association tracking is applied can be anticipated by learning the variations according to the overlapped vehicles' movements. To assess the performance of the suggested method, image data collected from CCTVs recording traffic information is used, and average success rate of occlusion segmentation is 96.9%.

Sub-Optimal Route Planning by Immuno-Agents

  • Takakazu, Ishimatsu;Chan, Tony
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.89.6-89
    • /
    • 2001
  • In Vehicle Information and Communication System (VICS), which is an active field of Intelligent Transport System (ITS), information of traffic congestion is sent to each vehicle at real time. However, a centralized navigation system is not realistic to guide millions of vehicles in a megalopolis. Autonomous distributed systems should be more flexible and scalable, and also have a chance to focus on each vehicle´s demand. This paper proposes a sub-optimal route planning mechanism of vehicles in urban areas using the non-network type immune system. Simulation is carried out using a cellular automaton model. This system announces a sub-optimal route to drivers in real time using VICS.

  • PDF

Steering Control of Autonomous Vehicle by the Vision System

  • Kim, Jung-Ha;Sugisaka, Masanori
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.91.1-91
    • /
    • 2001
  • The subject of this paper is vision system analysis of the autonomous vehicle. But, autonomous vehicle is one of the difficult topics from the point of view of several constrains on mobility, speed of vehicle and lack of environment information. Therefore, we are application of the vision system so that autonomous vehicle. Vision system of autonomous vehicle is likely to eyes of human. This paper can be divided into 2 parts. First, acceleration system and brake control system for longitudinal motion control. Second vision system of real time lane detection is for lateral motion control. This part deals lane detection method and image processing method. Finally, this paper focus on the integration of tole-operating vehicle and autonomous ...

  • PDF

A Realistic Path Loss Model for Real-time Communication in the Urban Grid Environment for Vehicular Ad hoc Networks

  • Mostajeran, Ehsan;Noor, Rafidah Md;Anisi, Mohammad Hossein;Ahmedy, Ismail;Khan, Fawad Ali
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권10호
    • /
    • pp.4698-4716
    • /
    • 2017
  • Wireless signal transmission is influenced by environmental effects. These effects have also been challenging for Vehicular Ad hoc Network (VANET) in real-time communication. More specifically, in an urban environment, with high mobility among vehicles, a vehicle's status from the transmitter can instantly trigger from line of sight to non-line of sight, which may cause loss of real-time communication. In order to overcome this, a deterministic signal propagation model is required, which has less complexity and more feasibility of implementation. Hence, we propose a realistic path loss model which adopts ray tracing technique for VANET in a grid urban environment with less computational complexity. To evaluate the model, it is applied to a vehicular simulation scenario. The results obtained are compared with different path loss models in the same scenario based on path loss value and application layer performance analysis. The proposed path loss model provides higher loss value in dB compared to other models. Nevertheless, the performance of vehicle-vehicle communication, which is evaluated by the packet delivery ratio with different vehicle transmitter density verifies improvement in real-time vehicle-vehicle communication. In conclusion, we present a realistic path loss model that improves vehicle-vehicle wireless real-time communication in the grid urban environment.

u-TSN에서 차량 통신시스템 구성 및 성능평가 (Vehicle Communication System Implementation for u-TSN and Its Performance Evaluations)

  • 전성희
    • 대한전자공학회논문지TC
    • /
    • 제48권7호
    • /
    • pp.35-40
    • /
    • 2011
  • u-TSN 환경에서 차량 단말기와 도로변에 설치되는 노변장치와의 통신은 서비스의 신속한 지원과 도로 교통정보의 실시간 확보를 위하여 교통시스템 구성 시에 매우 중요하다. 본 연구에서는 차량 통신 시스템의 성능 평가를 위한 V2I 혹은 I2V 통신 서비스 시나리오와 신속성과 정확성이 요구되는 긴급정보 전송을 위한 V2V 차량 간 통신 서비스 시나리오를 제시하였다. 그리고 실제 차량간 통신시스템을 구현한 후 제안된 통신 서비스 시나리오에 맞춰 차량통신 실험을 실시하는 방법으로 성능을 평가하였다. 실험결과 최적의 전송 모드 설정 조건을 도출하였으며, 도출된 결과는 안정적이고 효율적인 u-TSN 차량 통신시스템 개발에 적용가능하다.

시각정보의 단순반응시간을 고려한 페달 시스템의 관한 연구 (A Study on the System of Vehicle Pedal Based on Simple Reaction Time of Visual Information)

  • 고관명;이근희
    • 산업경영시스템학회지
    • /
    • 제14권23호
    • /
    • pp.37-46
    • /
    • 1991
  • This study deals with the designing of vehicle pedal considering simple reaction time of visual information. Because vehicle accidents may bring about fatal results, the vehicle design which is considered with safity is very important. Though the vehicle design considered with safity is important in the whole parts of vehicle, the designing of pedal which is directly connected the designing of pedal which can minimize reaction time to risk through simple experiments. In the experiments, the experience of driving, the location of brake pedal and the space between brake and accelerator pedal are considered. Using experiment equipment and IBM-PC, simple reaction time was measured. The data which was result from measurement was analyzed with SPSS/PC+. When brake pedal located right side and the space between brake and accelerator pedal was 35cm, reaction was minimized. Based on this results, the vehicle pedal should be designed.

  • PDF

Research of Vehicle Navigation Based Video-GIS

  • Feng, Jiang-Fan;Zhu, Guan-Yu;Liu, Zhao-Hong;Li, Yan
    • 한국공간정보시스템학회 논문지
    • /
    • 제11권2호
    • /
    • pp.39-44
    • /
    • 2009
  • In order to make the effect of the navigation system more direct, the paper proposes a thought of vehicle navigation system based on Video-GIS. A semantic framework has been defined whose core is focused on the integration and interaction of video and spatial information, which supports full content retrieval based on multimodal metadata extraction and fusion, and supports kinds of wireless access mode. Furthermore, requirements of prototype system are discussed. Then the design and implementation of framework are discussed. Next, describe the key ideas and technologies involved. Finally, we point out its future research trend.

  • PDF