• Title/Summary/Keyword: On-Off Controller

Search Result 420, Processing Time 0.024 seconds

A Study on Adaptive Control of AGV using Immune Algorithm (면역알고리즘을 이용한 AGV의 적응제어에 관한 연구)

  • 이영진;최성욱;손주한;이진우;조현철;이권순
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2000.04a
    • /
    • pp.56-63
    • /
    • 2000
  • Abstract - In this paper, an adaptive mechanism based on immune algorithm is designed and it is applied for the autonomous guided vehicle(AGV) driving. When the immune algorithm is applied to the PID controller, there exists the case that the plant is damaged due to the abrupt change of PID parameters since the parameters are adjusted almost randomly. To solve this problem, a neural network is used to model the plant and the parameter tuning of the model is performed by the immune algorithm. After the PID parameters are determined in this off-line manner, these gains are then applied to the plant for the on-line control using immune adaptive algorithm. Moreover, even though the neural network model may not be accurate enough intially, the weighting parameters are adjusted to be accurate through the on-line fine tuning. The computer simulation for the control of steering and speed of AGV is performed. The results show that the proposed controller has better performances than other conventional controllers.

  • PDF

A Study on Implementation of Immune Algorithm Adaptive Controller for AGV Driving Control (AGV의 주행 제어를 위한 면역 알고리즘 적응 제어기 실현에 관한 연구)

  • 이영진;이진우;손주한;이권순
    • Journal of Korean Port Research
    • /
    • v.14 no.2
    • /
    • pp.187-197
    • /
    • 2000
  • In this paper, an adaptive mechanism based on immune algorithm is designed and it is applied to the driving control of the autonomous guided vehicle(AGV). When the immune algorithm is applied to the PID controller, there exists the case that the plant is damaged by the abrupt change of PID parameters since the parameters are adjusted almost randomly. To solve this problem, a neural network used to model the plant and the parameter tuning of the model is performed by the immune algorithm. After the PID parameters are determined through this off-line manner, these parameters are then applied to the plant for the on-line control using immune adaptive algorithm. Moreover, even though the neural network model may not be accurate enough initially, the weighting parameters are adjusted more accurately through the on-line fine tuning. The experiment for the control of steering and speed of AGV is performed. The results show that the proposed controller provides better performances than other conventional controllers.

  • PDF

A Design of Dynamic Simulator of Articulated Robot (다관절 로봇의 동적 시뮬레이터 설계)

  • Park, In-Man;Jung, Seong-Won
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.18 no.2
    • /
    • pp.75-81
    • /
    • 2015
  • This study proposes an articulated robot control system using an on/off-line robot graphic simulator with multiple networks. The proposed robot control system consists of a robot simulator using OpenGL, a robot controller based on a DSP(TMS320) motion board, and the server/client communication by multiple networks. Each client can control the real robot through a server and can compare the real robot motion with the virtual robot motion in the simulation. Also, all clients can check and analyze the robot motion simultaneously through the motion image and data of the real robot. In order to show the validity of the presented system, we present an experimental result for a 6-axis vertical articulated robot. The proposed robot control system is useful, especially, in the industrial fields using remote robot control as well as industrial production automation with many clients.

A comparative study on the performance of pumping station by changing measurement methods and operational logic (빗물펌프장 계측방식과 운영 로직에 따른 거동 비교 연구)

  • Lee, Gunyoung;Beak, Hyunwook;Ryu, Jaena;Kim, Taehyoung;Oh, Jeill
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.6
    • /
    • pp.915-925
    • /
    • 2012
  • On-off control performance of target pumping station was experimented by changing measurement methods for storage level or inflow and operating logic for control system setting. Four scenarios with different measurement methods and operational logic were examined in the Matlab/Simulink environment. Controller's on-off control repetition that was frequent before has been reduced and more effective and stable system operation was found to be possible with the scenarios. Moreover, defensive operation enforced prevention of floods by changing measurement methods enabled economic operation that made an utmost use of storage volumes.

Study on User Interface for a Capacitive-Sensor Based Smart Device

  • Jung, Sun-IL;Kim, Young-Chul
    • Smart Media Journal
    • /
    • v.8 no.3
    • /
    • pp.47-52
    • /
    • 2019
  • In this paper, we designed HW / SW interfaces for processing the signals of capacitive sensors like Electric Potential Sensor (EPS) to detect the surrounding electric field disturbance as feature signals in motion recognition systems. We implemented a smart light control system with those interfaces. In the system, the on/off switch and brightness adjustment are controlled by hand gestures using the designed and fabricated interface circuits. PWM (Pulse Width Modulation) signals of the controller with a driver IC are used to drive the LED and to control the brightness and on/off operation. Using the hand-gesture signals obtained through EPS sensors and the interface HW/SW, we can not only construct a gesture instructing system but also accomplish the faster recognition speed by developing dedicated interface hardware including control circuitry. Finally, using the proposed hand-gesture recognition and signal processing methods, the light control module was also designed and implemented. The experimental result shows that the smart light control system can control the LED module properly by accurate motion detection and gesture classification.

Design and Implementation of PIC/FLC plus SMC for Positive Output Elementary Super Lift Luo Converter working in Discontinuous Conduction Mode

  • Muthukaruppasamy, S.;Abudhahir, A.;Saravanan, A. Gnana;Gnanavadivel, J.;Duraipandy, P.
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.5
    • /
    • pp.1886-1900
    • /
    • 2018
  • This paper proposes a confronting feedback control structure and controllers for positive output elementary super lift Luo converters (POESLLCs) working in discontinuous conduction mode (DCM). The POESLLC offers the merits like high voltage transfer gain, good efficiency, and minimized coil current and capacitor voltage ripples. The POESLLC working in DCM holds the value of not having right half pole zero (RHPZ) in their control to output transfer function unlike continuous conduction mode (CCM). Also the DCM bestows superlative dynamic response, eliminates the reverse recovery troubles of diode and retains the stability. The proposed control structure involves two controllers respectively to control the voltage (outer) loop and the current (inner) loop to confront the time-varying ON/OFF characteristics of variable structured systems (VSSs) like POESLLC. This study involves two different combination of feedback controllers viz. the proportional integral controller (PIC) plus sliding mode controller (SMC) and the fuzzy logic controller (FLC) plus SMC. The state space averaging modeling of POESLLC in DCM is reviewed first, then design of PIC, FLC and SMC are detailed. The performance of developed controller combinations is studied at different working states of the POESLLC system by MATLAB-Simulink implementation. Further the experimental corroboration is done through implementation of the developed controllers in PIC 16F877A processor. The prototype uses IRF250 MOSFET, IR2110 driver and UF5408 diodes. The results reassured the proficiency of designed FLC plus SMC combination over its counterpart PIC plus SMC.

Dynamic Modeling and Design of Controller based on Thrusters for Korean Lunar Module (달 착륙선의 동역학 모델링 및 추력기 기반 제어기 설계)

  • Yang, Sung-Wook;Lee, Sang-Chul
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.23 no.1
    • /
    • pp.49-55
    • /
    • 2015
  • This paper deals with dynamic modeling and controller design of a future Korean lunar module planned to be launched 2020's in Korea. For dynamic modeling of the lunar module, we first assume the lunar module as a rigid body. And we derive equations of motion for the lunar module by considering allocation of main thrusters and reaction thrusters. With the equation of motion, we design the controller based on the quaternion. A Pulse Width Pulse Frequency modulator(PWPFM) is selected for generating on/off signal. Finally, we construct a 2-phase descent mode including initial guidance mode, terminal guidance mode. The MATLAB simulation is performed for evaluating the descent ability and final landing velocity. The dynamic modeling and descent simulation of the lunar module in this paper could be applied for developing the future work of the Korean lunar exploration program.

Implementation of a 35KVA Converter Base on the 3-Phase 4-Wire STATCOMs for Medium Voltage Unbalanced Systems

  • Karimi, Mohammad Hadi;Zamani, Hassan;Kanzi, Khalil;Farahani, Qasem Vasheghani
    • Journal of Power Electronics
    • /
    • v.13 no.5
    • /
    • pp.877-883
    • /
    • 2013
  • This paper discussed a transformer-less shunt static synchronous compensator (STATCOM) with consideration of the following aspects: fast compensation of the reactive power, harmonic cancelation and reducing the unbalancing of the 3-phase source side currents. The STATCOM control algorithm is based on the theory of instantaneous reactive power (P-Q theory). A self charging technique is proposed to regulate the dc capacitor voltage at a desired level with the use of a PI controller. In order to regulate the DC link voltage, an off-line Genetic Algorithm (GA) is used to tune the coefficients of the PI controller. This algorithm arranged these coefficients while considering the importance of three factors in the DC link voltage response: overshoot, settling time and rising time. For this investigation, the entire system including the STATCOM, network, harmonics and unbalancing load are simulated in MATLAB/SIMULINK. After that, a 35KVA STATCOM laboratory setup test including two parallel converter modules is designed and the control algorithm is executed on a TMS320F2812 controller platform.

Investigation and Simulation Study on the Cascading Trip-off Fault of a Large Number of Wind Turbines in China on May 14, 2012

  • Qiao, Ying;Lu, Zong-Xiang;Lu, Ji;Ruan, Jia-Yang;Wu, Lin-lin
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.6
    • /
    • pp.2240-2248
    • /
    • 2015
  • The integration of the large-scale wind power brings great challenge to the stability of the power grid. This paper investigates and studies the fault on May 14, 2012 of the large-scale cascading trip-off of wind turbines in North China. According to the characteristics of the voltage variation, the fault process is divided into three stages: the pre-event stage, the critical stage before cascading, and the cascading stage. The scenes in the fault are reproduced, using the full-size actual power system model. Simulation models of double-fed induction generators (DFIGs) and SVCs including protection settings and controller strategies are carefully chosen to find out the reason of voltage instability in each stage. Some voltage dynamic that have never been observed before in the faults of the same kind are analyzed in detail, and an equivalent voltage sensitive dynamic model of DFIG is proposed for the fast computation. The conclusions about the voltage dynamics are validated by the actual PMU observation evidence.

Development of Neuro-Fuzzy System for Cold Storage Facility (저온저장고의 뉴로-퍼지 제어시스템 개발)

  • 양길모;고학균;홍지향
    • Journal of Biosystems Engineering
    • /
    • v.28 no.2
    • /
    • pp.117-126
    • /
    • 2003
  • This study was conducted to develop precision control system fur cold storage facility that could offer safe storage environment for green grocery. For that reason of neuro-fuzzy control system with learning ability algorithm and single chip neuro-fuzzy micro controller was developed for cold storage facility. Dynamic characteristics and hunting of neuro-fuzzy control system were far superior to on-off and fuzzy control system. Dynamic characteristics of temperature were faster than on-off control system by 1,555 seconds(123% faster) and fuzzy control system by 460 seconds(36.4% faster). When system was arrived at steady state. hunting was ${\pm}$0.5$^{\circ}C$ in on-off control system, ${\pm}$0.4$^{\circ}C$ in fuzzy control system, and ${\pm}$0.3$^{\circ}C$ in neuro-fuzzy control system. Hunting of humidity and wind velocity was also controlled precisely by 70 to 72.5% and 1m/s For storage experiment with onion, characteristics of neuro-fuzzy control system were tested. Dynamic characteristics of neuro-fuzzy control system made cold storage facility conducted precooling ability and minimized hunting.