• 제목/요약/키워드: On-Chassis

검색결과 337건 처리시간 0.026초

자동차 프런트 샤시 모듈의 좌표 해석 (Dimensional Analysis for the Front Chassis Module in the Auto Industry)

  • 이동목;양승한
    • 한국정밀공학회지
    • /
    • 제21권8호
    • /
    • pp.50-56
    • /
    • 2004
  • The directional ability of an automobile has an influence on driver directly, and hence it must be given most priority. Alignment factors of automobile such as the camber, caster and toe directly affect the directional ability of a vehicle. The above mentioned factors are determined by the pose of interlinks in the assembly of an automobile front chassis module. Measuring the position of center point of ball joints in the front lower arm is very difficult. A method to determine this position is suggested in this paper. Pose estimation for front chassis module and dimensional evaluation to find the rotational characteristics of front lower arm were developed based on fundamental geometric techniques. To interpret the inspection data obtained for front chassis module, 3-D best fit method is needed. The best fit method determines the relationship between the nominal design coordinate system and the corresponding feature coordinate system. The least squares method based on singular value decomposition is used in this paper.

온-섀시 방식의 고속 컨테이너 하역시스템 개발 (Development of The High-Speed Container Handling System with On-Chassis Type)

  • 최국진
    • 한국산업융합학회 논문집
    • /
    • 제23권2_2호
    • /
    • pp.323-332
    • /
    • 2020
  • Container ships are getting bigger due to the increase in global cargo volume. Therefore, it needs to increase the speed for loading and unloading of containers at the quayside. Traditionally, only one container is handled at once at the quayside due to it's heavy weight. In this paper, a method of handling multiple containers at once using chassis is proposed. Proposed system is consists of a container chassis that can hold three layer stacked containers, transport system that can handle the container chassis including rail-based or vehicle-based roll-on roll-off systems, and dedicated crane system. The conceptual design of crane and transport system that can handle three stacked containers is carried out and verified. The proposed system can be adopted for real quayside container handling system with high speed.

차량 통합샤시제어 로직에 관한 연구 (A Study on Global Chassis Control Logic of Vehicles)

  • 박기홍;허승진;손성효;장영하;황태훈
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.1001-1005
    • /
    • 2003
  • Most electronic chassis control systems until today have been designed with optimization on its own performance. Recently, however. importance of the global chassis control (GCC) concept that aims to achieve optimal performance on a global basis is more emphasized than ever, as the x-by-wire technology is rapidly progressing. In this research, a study has been done for developing a GCC logic for combining longitudinal, lateral, and vertical chassis control subsystems. A simulation has been performed to investigate interactions among the subsystems, and based upon the results, a GCC logic has been developed. The logic has been tested under various driving conditions. and the results have been compared with those from implementing subsystems without any GCC logic.

  • PDF

빔과 스프링 요소를 이용한 승용차의 차체 프레임 설계 (A Design on the chassis frame of passenger car using beam and spring Elements)

  • 이동찬;이상호;한창수
    • 한국자동차공학회논문집
    • /
    • 제7권9호
    • /
    • pp.89-96
    • /
    • 1999
  • This paper presents the optimization design technique on the joint stiffness and section characteristic factors of chassis frame, by using beam and spring elements in a given design package. Two correction methods are used for the optimization design of chassis frame. First is the equivalent inertia of moment method in relation to the section characteristic factors of joint zones, which are thickness , width and height of frame channel section. Second is the rotational spring element with joint stiffness of joint zones. The CAE example shows that the relationship of section characteristic factors and joint stiffness can effectively be used in designing chassis frame. In this point, if static and dynamic targets are given, the joint-zone and section characteristic factors of chassis frame intended may be designed and defined by using beam and rotational spring elements.

  • PDF

자동차 섀시 설계를 위한 자동차 타이어 도로소음에 관한 실험적 연구 (An Experimental Study on Automobile Tire Road Noise for Design of Automobile Chassis)

  • 김병삼
    • 한국소음진동공학회논문집
    • /
    • 제15권4호
    • /
    • pp.375-381
    • /
    • 2005
  • The purpose of this study is to obtain a foundation data for chassis design and road noise reduction of automobiles. Using the combination of the automobile, radial tires and instrumentation equipment, experimental investigation were carried out to examine the characteristics of the structural vibration of tire as the key to obtaining the effective parameters for reducing road noise. From the results of experimental studies it has been confirmed that the existence of important frequency ranges, which were attributable to the suspension and chassis system. The tire, axle and chassis natural frequency of automobile govern the road noise. Results that material property of tire and experimental condition are parameter for shifting of tire natural frequency, which enables a designer of an automobile to foresee the influence of the various design factors on the road noise.

통합 샤시제어 시스템 개발을 위한 시뮬레이션 환경 구축 (A Simulation Environment Development for Global Chassis Control System of Vehicles)

  • 황태훈;박기홍;허승진;이민수;이규훈;기승관
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1095-1098
    • /
    • 2005
  • Most electronic chassis control systems until today have been designed with optimization on its own performance. However, According to the increase of the interest regarding a vehicle safety and development of information technique, the integration technique of current chassis systems is being emphasized. Each enterprise proposed it with name of GCC(Global Chassis Control) or UCC(Unified Chassis Control). This study realizes control algorithm of suspension and brake by using the vehicle model of low degree of freedom as the primary stage of realization of integrated chassis control system. The proposed algorithm build the simulation environment connected to the CarSim having full vehicle model of 27 degree of freedom for raising the thrust of results

  • PDF

컨테이너 셔틀 서비스를 위한 차랑 경로 문제의 근사적 해법 (Efficient heuristic of vehicle routing problem for container shuttle service)

  • 신재영;오성인;박종원
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2009년도 공동학술대회
    • /
    • pp.171-172
    • /
    • 2009
  • 일반적으로 컨테이너 공로 운송은 근거리 운송, 장거리 운송, 셔틀 운송으로 구분되고, 컨테이너 차량은 chassis 형태에 따라 20' 컨테이너 전용, 40' 컨테이너 전용, combined chassis 차량으로 나눌 수 있다. 본 논문에서는 셔틀 운송을 고려한 컨테이너 차량 경로 문제를 다루고자 한다. 셔틀 서비스는 O/D pairs가 같은 물량이 여러 개 발생할 수 있다. 문제 정의는 기존의 연구된 combined chassis 트레일러를 이용한 컨테이너 차량 경로 문제와 유사하지만 셔틀 서비스의 특징을 고려해야 한다. 이에 각 노드를 한 번 이상 방문할 수 있는 pick-up and delivery 제약을 가진 차량경로문제를 근간으로 하여 combined chassis 트레일러를 이용한 컨테이너 셔틀 운송계획 문제를 정의하고, 적합하고 효율적인 해법을 제안하고자 한다.

  • PDF

Safety Evaluate of Brackets for Bare Chassis of a 30-seated Bus

  • Choi, Wan-Mug
    • International journal of advanced smart convergence
    • /
    • 제11권3호
    • /
    • pp.215-221
    • /
    • 2022
  • In the manufacturing process of the bus treated as the commercial vehicle, after making the bare chassis which is the basic frame of the vehicle body, the part in which passengers ride is connected. In addition, the necessary parts such as the engine and transmission required for the operation of the bus are connected to the bare chassis. The element connecting the parts such as the boarding part of the passengers, the engine, the suspension and the transmission is the bracket. The device required for driving and operating the vehicle is mounted on the bare chassis using the bracket, which should ensure stability during bus operation. In this study, we were performed stress analysis to evaluate the stability of three types of brackets connecting the bare chassis of a new type of 30-seater bus in the development process and components required for driving and operation. The stress analysis should be preceded by the analysis of boundary conditions considering the loads applied to the brackets according to the material of the bracket to be analyzed and the driving type of the bus. The finite element model for structural analysis of brackets according to the driving type of the bus was used by Altair's Hypermesh 2017, and the solver used for structural analysis was Altair's Optistruct. The stress analysis was performed to present the safe and vulnerable parts of the three brackets.

주행모드에 따른 전기이륜차의 1회충전주행거리 시험방법에 관한 연구 (Per-Charge Range-Testing Method for Two-Wheeled Electric Vehicles)

  • 길범수;김강출
    • 대한기계학회논문집A
    • /
    • 제38권1호
    • /
    • pp.37-44
    • /
    • 2014
  • 본 연구에서는 전기이륜차의 1회충전주행거리를 알아보기 위해 도로 주행시험과 차대동력계(Chassis Dynamometer) 주행시험을 하였다. 도로주행시험은 대전시(Daejeon Metropolitan City)의 도로 중 대표적인 3가지 루트에서 주행시험을 하였다. 차대동력계를 이용한 CVS-40모드 주행시험의 경우 도로 부하조건을 다양하게 설정하여 CVS-40 모드주행을 실시하였다. 본 연구를 통하여 도로에서의 전기이륜차의 1회 충전주행거리(Per-Charge Range Testing)를 확인하고, 차대동력계 도로부하 설정방법에 따른 주행거리 및 에너지소비효율을 측정하였다. 이를 통해 실도로 주행시험과 차대동력계 주행시험을 비교하여, 차대동력계 실험에서도 전기이륜차 1회충전주행거리시험이 실도로에서의 주행조건과 근접한 결과를 갖는 도로부하 설정에 대해 연구하였다.

Test Bed for Vehicle Longitudinal Control Using Chassis Dynamometer and Virtual Reality: An Application to Adaptive Cruise Control

  • Mooncheol Won;Kim, Sung-Soo;Kang, Byeong-Bae;Jung, Hyuck-Jin
    • Journal of Mechanical Science and Technology
    • /
    • 제15권9호
    • /
    • pp.1248-1256
    • /
    • 2001
  • In this study, a test bed for vehicle longitudinal control is developed using a chassis dynamometer and real time 3-D graphics. The proposed test bed system consists of a chassis dynamometer on which test vehicle can run longitudinally, a video system that shows virtual driver view, and computers that control the test vehicle and realize the real time 3-D graphics. The purpose of the proposed system is to test vehicle longitudinal control and warning algorithms such as Adaptive Cruise Control(ACC), stop and go systems, and collision warning systems. For acceleration and deceleration situations which only need throttle movements, a vehicle longitudinal spacing control algorithm has been tested on the test bed. The spacing control algorithm has been designed based on sliding mode control and road grade estimation scheme which utilizes the vehicle engine torque map and gear shift information.

  • PDF