• Title/Summary/Keyword: On-Board Imager

Search Result 51, Processing Time 0.022 seconds

ERROR ANALYSIS FOR GOCI RADIOMETRIC CALIBRATION

  • Kang, Gm-Sil;Youn, Heong-Sik
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.187-190
    • /
    • 2007
  • The Geostationary Ocean Color Imager (GOCI) is under development to provide a monitoring of ocean-color around the Korean Peninsula from geostationary platforms. It is planned to be loaded on Communication, Ocean, and Meteorological Satellite (COMS) of Korea. The GOCI has been designed to provide multi-spectral data to detect, monitor, quantify, and predict short term changes of coastal ocean environment for marine science research and application purpose. The target area of GOCI observation covers sea area around the Korean Peninsula. Based on the nonlinear radiometric model, the GOCI calibration method has been derived. The nonlinear radiometric model for GOCI will be validated through ground test. The GOCI radiometric calibration is based on on-board calibration devices; solar diffuser, DAMD (Diffuser Aging Monitoring Device). In this paper, the GOCI radiometric error propagation is analyzed. The radiometric model error due to the dark current nonlinearity is analyzed as a systematic error. Also the offset correction error due to gain/offset instability is considered. The radiometric accuracy depends mainly on the ground characterization accuracies of solar diffuser and DAMD.

  • PDF

Rapid Formation and Disappearance of a Filament Barb

  • Joshi, Anand D.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.86.1-86.1
    • /
    • 2013
  • Observations of a filament showing an activated barb recorded from the at the Dutch Open Telescope (DOT) on 2010 August 20 are presented. The filament developed a barb in 10 minutes, which disappeared within the next 35 minutes. Such a rapid formation and disappearance of a filament barb is unusual, and has been seldom reported. Line-of-sight velocity maps were constructed from images in seven line positions along the H-alpha line. We observe flows in the filament spine towards the barb location prior to its formation, and flows in the barb towards the spine during its disappearance. Photospheric magnetograms from Helioseismic Magnetic Imager on board the Solar Dynamics Observatory were used to determine the changes in magnetic flux in the region surrounding the barb location. The variation of magnetic flux in this duration support the view that barbs are rooted in minor magnetic polarity.

  • PDF

The Moon's Spectral Irradiance Computation using Relative Positions between the Sun, Moon, and the Satellite (태양, 달, 위성의 위치를 이용한 달의 방사조도 계산)

  • Seo, Seok-Bae;Song, Young-Joo
    • Aerospace Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.152-162
    • /
    • 2013
  • The spectral irradiance of the Moon is used to monitor the performance of on-board satellite's visible channel detectors. This paper established a method to compute the spectral irradiance of the Moon using the relative positions between the Sun, Moon, and the COMS (Communication, Ocean, Meteorological Satellite), which is generated through the COMS FDS (Flight Dynamics Subsystem). The established computation method is applied to the algorithm which is developed to detect and compensate the degradations of COMS MI (Meteorological Imager) visible channel detectors.

Evaluation of Geometric Correspondence of kV X-ray Images, Electric Portal Images and Digitally Reconstructed Radiographic Images (kV X선 영상, 전자조사문 영상, 디지털화재구성 영상 간 기하학적 일치성 평가)

  • Cheong, Kwang-Ho;Kim, Kyoung-Joo;Cho, Byung-Chul;Kang, Sei-Kwon;Juh, Ra-Hyeong;Bae, Hoon-Sik;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.18 no.3
    • /
    • pp.118-125
    • /
    • 2007
  • In this study we estimated a geometric correlation among digitally reconstructed radiographic image (DRRI), kV x-ray image (kVXI) from the On-Board Imager (OBI) and electric portal image (EPI). To verify geometric correspondence of DRRI, kVXI and EPI, specially designed phantom with indexed 6 ball bearings (BBs) were employed. After accurate setup of the phantom on a treatment couch using orthogonal EPIs, we acquired set of orthogonal kVXIs and EPIs then compared the absolute positions of the center of the BBs calculated at each phantom plane for kVXI and EPI respectively. We also checked matching result for obliquely incident beam (gantry angle of $315^{\circ}$) after 2D-2D matching provided by OBI application. A reference EPI obtained after initial setup of the phantom was compared with 10 series of EPIs acquired after each 2D-2D matching. Imaginary setup errors were generated from -5 mm to 5 mm at each couch motion direction. Calculated positions of all center positions of the BBs at three different images were agreed with the actual points within a millimeter and each other. Calculated center positions of the BBs from the reference and obtained EPIs after 2D-2D matching agreed within a millimeter. We could tentatively conclude that the OBI system was mechanically quite reliable for image guided radiation therapy (IGRT) purpose.

  • PDF

Development of an Automatic Seed Marker Registration Algorithm Using CT and kV X-ray Images (CT 영상 및 kV X선 영상을 이용한 자동 표지 맞춤 알고리듬 개발)

  • Cheong, Kwang-Ho;Cho, Byung-Chul;Kang, Sei-Kwon;Kim, Kyoung-Joo;Bae, Hoon-Sik;Suh, Tae-Suk
    • Radiation Oncology Journal
    • /
    • v.25 no.1
    • /
    • pp.54-61
    • /
    • 2007
  • [ $\underline{Purpose}$ ]: The purpose of this study is to develop a practical method for determining accurate marker positions for prostate cancer radiotherapy using CT images and kV x-ray images obtained from the use of the on- board imager (OBI). $\underline{Materials\;and\;Methods}$: Three gold seed markers were implanted into the reference position inside a prostate gland by a urologist. Multiple digital image processing techniques were used to determine seed marker position and the center-of-mass (COM) technique was employed to determine a representative reference seed marker position. A setup discrepancy can be estimated by comparing a computed $COM_{OBI}$ with the reference $COM_{CT}$. A proposed algorithm was applied to a seed phantom and to four prostate cancer patients with seed implants treated in our clinic. $\underline{Results}$: In the phantom study, the calculated $COM_{CT}$ and $COM_{OBI}$ agreed with $COM_{actual}$ within a millimeter. The algorithm also could localize each seed marker correctly and calculated $COM_{CT}$ and $COM_{OBI}$ for all CT and kV x-ray image sets, respectively. Discrepancies of setup errors between 2D-2D matching results using the OBI application and results using the proposed algorithm were less than one millimeter for each axis. The setup error of each patient was in the range of $0.1{\pm}2.7{\sim}1.8{\pm}6.6\;mm$ in the AP direction, $0.8{\pm}1.6{\sim}2.0{\pm}2.7\;mm$ in the SI direction and $-0.9{\pm}1.5{\sim}2.8{\pm}3.0\;mm$ in the lateral direction, even though the setup error was quite patient dependent. $\underline{Conclusion}$: As it took less than 10 seconds to evaluate a setup discrepancy, it can be helpful to reduce the setup correction time while minimizing subjective factors that may be user dependent. However, the on-line correction process should be integrated into the treatment machine control system for a more reliable procedure.

Creating Atmospheric Scattering Corrected True Color Image from the COMS/GOCI Data (천리안위성 해양탑재체 자료를 이용한 대기산란 효과가 제거된 컬러합성 영상 제작)

  • Lee, Kwon-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.16 no.1
    • /
    • pp.36-46
    • /
    • 2013
  • The Geostationary Ocean Color Imager (GOCI), the first geostationary ocean color observation instrument launched in 2010 on board the Communication, Ocean, and Meteorological Satellite (COMS), has been generating the operational level 1 data. This study describes a methodology for creating the GOCI true color image and data processing software, namely the GOCI RGB maker. The algorithm uses a generic atmospheric correction and reprojection technique to produce the color composite image. Especially, the program is designed for educational purpose in a way that the region of interest and image size can be determined by the user. By distributing software to public, it would maximize the understanding and utilizing the GOCI data. Moreover, images produced from the geostationary observations are expected to be an excellent tool for monitoring environmental changes.

Development of Korea Ocean Satellite Center (KOSC): System Design on Reception, Processing and Distribution of Geostationary Ocean Color Imager (GOCI) Data (해양위성센터 구축: 통신해양기상위성 해색센서(GOCI) 자료의 수신, 처리, 배포 시스템 설계)

  • Yang, Chan-Su;Cho, Seong-Ick;Han, Hee-Jeong;Yoon, Sok;Kwak, Ki-Yong;Yhn, Yu-Whan
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.2
    • /
    • pp.137-144
    • /
    • 2007
  • In KORDI (Korea Ocean Research and Development Institute), the KOSC (Korea Ocean Satellite Center) construction project is being prepared for acquisition, processing and distribution of sensor data via L-band from GOCI (Geostationary Ocean Color Imager) instrument which is loaded on COMS (Communication, Ocean and Meteorological Satellite); it will be launched in 2008. Ansan (the headquarter of KORDI) has been selected for the location of KOSC between 5 proposed sites, because it has the best condition to receive radio wave. The data acquisition system is classified into antenna and RF. Antenna is designed to be $\phi$ 9m cassegrain antenna which has 19.35 G/T$(dB/^{\circ}K)$ at 1.67GHz. RF module is divided into LNA (low noise amplifier) and down converter, those are designed to send only horizontal polarization to modem. The existing building is re-designed and arranged for the KOSC operation concept; computing room, board of electricity, data processing room, operation room. Hardware and network facilities have been designed to adapt for efficiency of each functions. The distribution system which is one of the most important systems will be constructed mainly on the internet. and it is also being considered constructing outer data distribution system as a web hosting service for offering received data to user less than an hour.

Digital Tomosynthesis for Patient Alignment System Using Half-fan Mode CBCT Projection Images (Half-fan 모드를 이용한 방사선치료환자 위치교정을 위한 디지털영상 합성영상기술에 관한 예비연구)

  • Park, Justin C.;Park, Sung-Ho;Kim, Jin-Sung;Han, Young-Yih;Ju, Sang-Gyu;Shin, Eun-Hyuk;Shin, Jung-Suk;Park, Hee-Chul;Ahn, Yong-Chan;Song, Willian Y.
    • Progress in Medical Physics
    • /
    • v.21 no.4
    • /
    • pp.360-366
    • /
    • 2010
  • To generate on-board digital tomosynthesis (DTS) for three-dimensionalimage-guided radiation therapy (IGRT) as an alternative to conventional portal imaging or on-board cone-beam computed tomography (CBCT), two clinical cases (liver and bladder) were selected to illustrate the capabilities of on-board DTS for IGRT. DTS images were generated from subsets of CBCT projection data (45, 162 projections) using half-fan mode scanning with a Feldkamp-type reconstruction algorithm. Digital tomosynthesis slices appeared similar to coincident CBCT planes and yielded substantially more anatomic information. Improved bony and soft-tissue visibility in DTS images is likely to improve target localization compared with radiographic verification techniques and might allow for daily localization of a soft-tissue target. Digital tomosynthesis might allow targeting of the treatment volume on the basis of daily localization.

RAINFALL ESTIMATION OVER THE TAIWAN ISLAND FROM TRMM/TMI DATA DURING THE TYPHOON SEASON

  • Chen, W-J;Tsai, M-D;Wang, J-L;Liu, G-R;Hu, J-C;Li, C-C
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.930-933
    • /
    • 2006
  • A new algorithm for satellite microwave rainfall retrievals over the land of Taiwan using TMI (TRMM Microwave Imager) data on board TRMM (Tropical Rainfall Measuring Mission) satellite is described in this study. The scattering index method (Grody, 1991) was accepted to develop a rainfall estimation algorithm and the measurements from Automatic Rainfall and Meteorological Telemetry System (ARMTS) were employed to evaluate the satellite rainfall retrievals. Based on the standard products of 2A25 derived from TRMM/PR data, the rainfall areas over Taiwan were divided into convective rainfall area and stratiform rainfall areas with/without bright band. The results of rainfall estimation from the division of rain type are compared with those without the division of rain type. It is shown that the mean rainfall difference for the convective rain type is reduced from -6.2mm/hr to 1.7mm/hr and for the stratiform rain type with bright band is decreased from 10.7 mm/hr to 2.1mm/hr. But it seems not significant improvement for the stratiform rain type without bright band.

  • PDF

Current Status and Results of In-orbit Function, Radiometric Calibration and INR of GOCI-II (Geostationary Ocean Color Imager 2) on Geo-KOMPSAT-2B (정지궤도 해양관측위성(GOCI-II)의 궤도 성능, 복사보정, 영상기하보정 결과 및 상태)

  • Yong, Sang-Soon;Kang, Gm-Sil;Huh, Sungsik;Cha, Sung-Yong
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_2
    • /
    • pp.1235-1243
    • /
    • 2021
  • Geostationary Ocean Color Imager 2 (GOCI-II) on Geo-KOMPSAT-2 (GK2B)satellite was developed as a mission successor of GOCI on COMS which had been operated for around 10 years since launch in 2010 to observe and monitor ocean color around Korean peninsula. GOCI-II on GK2B was successfully launched in February of 2020 to continue for detection, monitoring, quantification, and prediction of short/long term changes of coastal ocean environment for marine science research and application purpose. GOCI-II had already finished IAC and IOT including early in-orbit calibration and had been handed over to NOSC (National Ocean Satellite Center) in KHOA (Korea Hydrographic and Oceanographic Agency). Radiometric calibration was periodically conducted using on-board solar calibration system in GOCI-II. The final calibrated gain and offset were applied and validated during IOT. And three video parameter sets for one day and 12 video parameter sets for a year was selected and transferred to NOSC for normal operation. Star measurement-based INR (Image Navigation and Registration) navigation filtering and landmark measurement-based image geometric correction were applied to meet the all INR requirements. The GOCI2 INR software was validated through INR IOT. In this paper, status and results of IOT, radiometric calibration and INR of GOCI-II are analysed and described.