• Title/Summary/Keyword: Omori-Yau maximum principle

Search Result 3, Processing Time 0.029 seconds

RIGIDITY THEOREMS IN THE HYPERBOLIC SPACE

  • De Lima, Henrique Fernandes
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.1
    • /
    • pp.97-103
    • /
    • 2013
  • As a suitable application of the well known generalized maximum principle of Omori-Yau, we obtain rigidity results concerning to a complete hypersurface immersed with bounded mean curvature in the $(n+1)$-dimensional hyperbolic space $\mathbb{H}^{n+1}$. In our approach, we explore the existence of a natural duality between $\mathbb{H}^{n+1}$ and the half $\mathcal{H}^{n+1}$ of the de Sitter space $\mathbb{S}_1^{n+1}$, which models the so-called steady state space.

COMPLETE SPACELIKE HYPERSURFACES WITH CMC IN LORENTZ EINSTEIN MANIFOLDS

  • Liu, Jiancheng;Xie, Xun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.5
    • /
    • pp.1053-1068
    • /
    • 2021
  • We investigate the spacelike hypersurface Mn with constant mean curvature (CMC) in a Lorentz Einstein manifold Ln+11, which is supposed to obey some appropriate curvature constraints. Applying a suitable Simons type formula jointly with the well known generalized maximum principle of Omori-Yau, we obtain some rigidity classification theorems and pinching theorems of hypersurfaces.