• Title/Summary/Keyword: Omnidirectionality

Search Result 4, Processing Time 0.015 seconds

Unified-type Design and Structural Analysis for Mecanum Wheel Performance Improvement (메카넘휠 성능개선을 위한 일체형 설계 및 구조해석)

  • Jeong, Jeaung;Kwon, Soon-Jae;Chu, Baeksuk;Park, Junyoung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.2
    • /
    • pp.117-123
    • /
    • 2014
  • In order to provide a mobile robot with omnidirectionality, various types of omnidirectional wheels have been developed. This paper deals with an improved design and structural analysis of a Mecanum wheel, which is the type of omnidirectional wheels most commonly used in industrial fields. A geometric formulation for manufacturingthe Mecanum wheel is presented and two types of Mecanum wheels are designed and fabricated in this research. While conventional assembled-type Mecanum wheels have a complicated structure and the high possibility of mutual interference between sub-components, a unified type of Mecanum wheel reduces the number of sub-components and increases the degree of structural rigidity. The stress and strain properties of the two designs are compared to confirm the quantitative improvement of the new design by a commercial structural analysis tool. The analysis results show that the unified type of Mecanum wheel has properties superior to the assembled type of Mecanum wheel in terms of its ability to reduce interference.

Performance Evaluation of Concrete Polishing Robot with Omnidirectional Mobile Mechanism (전방향 이동 메커니즘을 적용한 콘크리트 폴리싱 로봇의 성능평가)

  • Cho, Gangik;Chu, Baeksuk
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.2
    • /
    • pp.112-117
    • /
    • 2016
  • In the construction industry, concrete polishing is used to grind and rub the surface of concrete grounds with polishing machines to increase the strength of the concrete after deposition. Polishing is performed manually in spite of the generation of dust and the requirement of frequent replacements of the polishing pad. The concrete polishing robot developed in this research is a novel polishing automation system for preventing the workers from being exposed to poor working environments. This robot is able to change multiple polishing tools automatically; however, the workers can conveniently replace the worn-out polishing pads with new ones. The mobile platform of the polishing robot employs omnidirectional wheels to enable a flexible motion even in small and complicated workspaces. To evaluate the performance of the developed concrete polishing robot, extensive experiments including square trajectory tracking, automatic tool changing, actual polishing, and path generation simulation were performed.

A Study of 5G Systems to Improve Receiver Performance in the mmWave Band (밀리미터파 대역의 수신 성능을 개선하기 위한 5G 시스템에 대한 연구)

  • Myeong-saeng Kim;Dong-ok Kim
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.3
    • /
    • pp.362-368
    • /
    • 2024
  • In this paper, we investigated the performance of directional and omnidirectional precoding schemes when transmitting to improve downlink performance in massive MIMO. Omnidirectional precoding was used to broadcast a common signal, such as a synchronization or control signal, to all users. The main purpose of omnidirectional precoding is to design the precoding matrix so that the signal transmitted in the downlink is the same in all directions and emitted with maximum energy. We propose a flexible omnidirectional precoding method for full-dimensional massive MIMO that can set the spatial coverage range to less than 120 degrees. The constraints of omnidirectionality of all antennas, equal transmit power, and maximum transmit rate are used to design the encoding matrix of the proposed method. The performance was evaluated in terms of spatial coverage by considering changing the spatial coverage of the antenna array by changing the distance between neighboring antennas in the antenna array.

A Four-Wheeled Mobile Robot with Omnidirectionality (전방향성을 갖는 네 바퀴 이동로봇)

  • Kang, Su Min;Sung, Young Whee
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.23 no.1
    • /
    • pp.21-27
    • /
    • 2022
  • Traditional automobile or 2-wheeled robot have limitations on mobility because of their mechanical structure. As traditional automobile is being replaced by electric cars, robot technology is applied to the car industry. In robotics, many researchers worked on omnidirectional mobile robot and produced lots of noticeable results. However in many of the results, specialized wheels such as Mecanum wheels are required. That imposes restrictions on robot speed and outdoor driving. We proposed a 2-wheeled modular robot that has omnidirectional mobility without using specialized wheels. In this paper, we propose a 4-wheeled omnidirectional mobile robot that consists of those two modular robots. The proposed robot adopts electric brakes to combine wheel housings and the robot body or to separate wheel housings from the robot body. Two absolute-type encoders and four incremental encoders are used to control the position of the wheel housing and velocities of the wheels. The proposed robot has omnidirectional mobility and can move fast and outdoor with normal tire wheels. We implemented the proposed robot and the feasibility and stability of the robot is verified by two separate experiments.