• 제목/요약/키워드: Omni-directional motion

검색결과 31건 처리시간 0.019초

기구학적 여유 자유도를 지니는 전방향 모바일 로봇에 관한 연구 (Study of an Omni-directional Mobile Robot with Kinematic Redundancy)

  • 정의정;이병주;김희국
    • 로봇학회논문지
    • /
    • 제3권4호
    • /
    • pp.338-344
    • /
    • 2008
  • Most omni-directional mobile robots have to change their trajectory for avoiding obstacles regardless of the size of the obstacles. However, an omni-directional mobile robot having kinematic redundancy can maintain the trajectory while the robot avoids small obstacles. This works deals with the kinematic modeling and motion planning of an omni-directional mobile robot with kinematic redundancy. This robot consists of three wheel mechanisms. Each wheel mechanism is modeled as having four joints, while only three joints are necessary for creating the omni-directional motion. Thus, each chain has one kinematic redundancy. Two types of wheel mechanisms are compared and its kinematic modeling is introduced. Finally, several motion planning algorithms using the kinematic redundancy are investigated. The usefulness of this robot is shown through experiment.

  • PDF

메카넘휠 기반의 전방향 이동로봇 주행성능 평가 (Mobile Performance Evaluation of Mecanum Wheeled Omni-directional Mobile Robot)

  • 주백석;성영휘
    • 한국생산제조학회지
    • /
    • 제23권4호
    • /
    • pp.374-379
    • /
    • 2014
  • Mobile robots with omni-directional wheels can generate instant omni-directional motion without requiring extra space to change the direction of the body. Therefore, they are capable of moving in an arbitrary direction under any orientation even in narrow aisles or tight areas. In this research, an omni-directional mobile robot based on Mecanum wheels was developed to achieve omni-directionality. A CompactRIO embedded real-time controller and C series motion and I/O modules were employed in the control system design. Ultrasonic sensors installed on the front and lateral sides were utilized to measure the distance between the mobile robot and the side wall of a workspace. Through intensive experiments, a performance evaluation of the mobile robot was conducted to confirm its feasibility for industrial purposes. Mobility, omni-directionality, climbing capacity, and tracking performance of a squared trajectory were selected as performance indices to assess the omni-directional mobile robot.

전방향 운동용 메카넘 바퀴의 기하학적 설계 (Geometry Design of Omni-directional Mecanum Wheel)

  • 신동헌;이인태
    • 한국정밀공학회지
    • /
    • 제15권3호
    • /
    • pp.11-17
    • /
    • 1998
  • The mecanum wheel was originaly developed in sweden to realize the omni-directional motion of the cart. The circumference of each wheel is lined with rollers set at 45 degrees relative to the main wheel. This paper proves that the roller of the mecanum wheel shapes the ellipsoid, derives the kinematic relationships between the parameters of the wheel and rollers, and proposes the procedure to determine the parameters of the wheel. The result was implemented into the computer program for the design of the mecanum wheel.

  • PDF

전방향 이동 메커니즘 기반의 교육용 로봇 플랫폼 개발 (Development of Educational Robot Platform Based on Omni-directional Mobile Mechanism)

  • 주백석;성영휘
    • 한국정밀공학회지
    • /
    • 제30권11호
    • /
    • pp.1161-1169
    • /
    • 2013
  • In this paper an omni-directional mobile robot is suggested for educational robot platform. Comparing to other robots, a mobile robot can be easily designed and manufactured due to its simple geometric structure. Moreover, since it is required to have low DOF motion on planar space, fabrication of control system is also simple. In this research, omni-directional wheels were adopted to remove the non-holonomic characteristic of conventional wheels and facilitate control system design. Firstly, geometric structure of a Mecanum wheel which is a most frequently used omni-directional wheel was demonstrated. Then, the organization of the mobile platform was suggested in aspects of mechanism manufacturing and electronic hardware design. Finally, a methodology of control system development was introduced for educational purpose. Due to an intuitive motion generating ability, simple hardware composition, and convenient control algorithm applicability, the omni-directional mobile robot suggested in this research is expected to be a promising educational platform.

운전자 체중 이동을 이용한 전방향 전동 보드의 제어 (Control of an Omni-directional Electric Board using Driver Weight Shift)

  • 최용준;류정래
    • 전자공학회논문지
    • /
    • 제53권4호
    • /
    • pp.149-155
    • /
    • 2016
  • 본 논문에서는 운전자의 체중 이동을 활용한 메카넘 휠 기반 전방향 전동 보드 제어 방법을 제안한다. 운전을 위한 별도의 운전 장치를 사용하지 않으며, 다수의 센서를 활용하여 측정한 체중 분포로부터 무게 중심의 위치를 구하여 전방향 전동 보드의 병진 운동과 회전 운동의 3 자유도 운전 명령을 생성한다. 체중 이동은 운전 명령으로 반영됨과 동시에 관성력을 극복하기 위한 운전자의 동작과 일치하여 직관적인 장점이 있다. 전체 제어 구조를 제시하며, 실험에 적용하여 제안된 방식의 타당성을 확인한다.

구동 캐스터 바퀴를 이용한 전방향 모바일 로봇의 오도메트리와 내비게이션 (Odometry and Navigation of an Omni-directional Mobile Robot with Active Caster Wheels)

  • 정의정;이병주
    • 제어로봇시스템학회논문지
    • /
    • 제15권10호
    • /
    • pp.1014-1020
    • /
    • 2009
  • This work deals with navigation of an omni-directional mobile robot with active caster wheels. Initially, the posture of the omni-directional mobile robot is calculated by using the odometry information. Next, the position accuracy of the mobile robot is measured through comparison of the odometry information and the external sensor measurement. Finally, for successful navigation of the mobile robot, a motion planning algorithm that employs kinematic redundancy resolution method is proposed. Through experiments for multiple obstacles and multiple moving obstacles, the feasibility of the proposed navigation algorithm was verified.

전방향 이동로봇 위치제어 알고리즘과 실험적 검증 (Position Control Algorithm and Experimental Evaluation of an Omni-directional Mobile Robot)

  • 주백석;조강익;성영휘
    • 한국생산제조학회지
    • /
    • 제24권2호
    • /
    • pp.141-147
    • /
    • 2015
  • In this study, a position control algorithm for an omni-directional mobile robot based on Mecanum wheels was introduced and experimentally evaluated. Multiple ultrasonic sensors were installed around the mobile robot to obtain position feedback. Using the distance of the robot from the wall, the position and orientation of the mobile robot were calculated. In accordance with the omni-directional velocity generation mechanism, the velocity kinematics between the Mecanum wheel and the mobile platform were determined. Based on this formulation, a simple and intuitive position control algorithm was suggested. To evaluate the control algorithm, a test bed composed of artificial walls was designed and implemented. While conventional control algorithms based on normal wheels require additional path planning for two-dimensional planar motion, the omni-directional mobile robot using distance sensors was able to directly follow target positions with the simple proposed position feedback algorithm.

어안 이미지 기반의 움직임 추정 기법을 이용한 전방향 영상 SLAM (Omni-directional Vision SLAM using a Motion Estimation Method based on Fisheye Image)

  • 최윤원;최정원;대염염;이석규
    • 제어로봇시스템학회논문지
    • /
    • 제20권8호
    • /
    • pp.868-874
    • /
    • 2014
  • This paper proposes a novel mapping algorithm in Omni-directional Vision SLAM based on an obstacle's feature extraction using Lucas-Kanade Optical Flow motion detection and images obtained through fish-eye lenses mounted on robots. Omni-directional image sensors have distortion problems because they use a fish-eye lens or mirror, but it is possible in real time image processing for mobile robots because it measured all information around the robot at one time. In previous Omni-Directional Vision SLAM research, feature points in corrected fisheye images were used but the proposed algorithm corrected only the feature point of the obstacle. We obtained faster processing than previous systems through this process. The core of the proposed algorithm may be summarized as follows: First, we capture instantaneous $360^{\circ}$ panoramic images around a robot through fish-eye lenses which are mounted in the bottom direction. Second, we remove the feature points of the floor surface using a histogram filter, and label the candidates of the obstacle extracted. Third, we estimate the location of obstacles based on motion vectors using LKOF. Finally, it estimates the robot position using an Extended Kalman Filter based on the obstacle position obtained by LKOF and creates a map. We will confirm the reliability of the mapping algorithm using motion estimation based on fisheye images through the comparison between maps obtained using the proposed algorithm and real maps.

이중원뿔 투영을 이용한 거리의 추정 (Depth estimation by using a double conic projection)

  • 김완수;조형석;김성권
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.1411-1414
    • /
    • 1997
  • It is essential to obtain a distane informaion in order to completely execute assembly tasks such as a grasping and an insertion. In this paper, we propose a method estimating a measurement distance from a sensor to an object through using the omni-directional image sensing system for assembly(OISSA) and show its features and feasibility by a computer simulation. The method, utilizing a forwarded motion stereo technique, is simple to search the corresponding points and possible to immediatiely obtain a three-dimensional 2.pi.-shape information.

  • PDF

회전 트로웰의 원판형 가정을 통한 콘크리트 미장로봇의 전방향 운동 모델링 (Omni-Directional Motion Modeling of Concrete Finishing Trowel Robot with Circular Trowels)

  • 신동헌;김호중
    • 제어로봇시스템학회논문지
    • /
    • 제5권4호
    • /
    • pp.454-461
    • /
    • 1999
  • A concrete floor trowel machine, developed in the U.S in 1990's, consists of only two rotary trowels, and doesn't need any other mechanism for motion such as wheels. When the machine flattens a concrete floor with its rotary trowels, the machine can move in any direction by utilizing the unbalanced friction forces occurring between the rotary wheels and the floor when the trowels are tilted in appropriate directions. In order to automate the trowels machine, this paper proposed the self-propulsive concrete finishing trowel robot which has twin trowels. For the control of the robot, this paper discussed the following. Firstly, the dynamics model of the driving frictional force applied on each trowel from the floor is derived. Secondly, the relationship between the driving force for the robot and the control variable of the robot is derived. Finally, the basic motion of the robot are realized by using the obtained relationship. This paper figures out how the concrete floor finishing robot with tow trowels moves and will contribute to realizing it.

  • PDF