• Title/Summary/Keyword: Olive Flounder Culture

Search Result 82, Processing Time 0.019 seconds

Isolation of Marine Bacteria Killing Red Tide Microalgae -IV. Characteristics of Algicidal Substances, Produced from Micrococcus sp. LG-5 and the Effects on Marine Organisms- (적조생물 살조세균 탐색 -IV. 살조세균 Micrococcus sp. LG-5가 생산하는 살조물질의 특성과 해양생물에 미치는 영향-)

  • JEONG Seong-Youn;PARK Young-Tae;KIM Mu-Chan;CHOI Seok-Cheol;SEONG Hee-Kyung;KIM Jai-Young;KIM Tae-Un;LEE Won-Jae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.33 no.4
    • /
    • pp.339-347
    • /
    • 2000
  • An algicidal bacterium, Micrococcus sp. LG-5 against the harmful dinoflagellate, Cochlodinium polykrikoides was isolated. The optimal conditions for the highest algicidal activity of bacterial culture filtrate showed in the range of $20{\~}30^{\circ}C$, at pH 7.0 and $3.0{\%}$ of NaCl concentration. In addition, $IC_(50)(mean of 50{\%} inhibitory concentration)$ of the culture filtrate against C. polykrikoides after incubation of 5 days was $0.482{\%}$. To investigate heat and pH stability of the culture filtrate of Micrococcus sp. LG-5, the culture filtrate ($pore size, 0.1 {\mu}m$) was heated to $121^{\circ}C for 15 min$ and adjusted pH from 2.0 to 10.0. There were no significant changes in algicidal activity by heat treatment and the pH change between pH from 5.0 to 10.0. The algicidal substances produced from Micrococcus sp. LG-5 were mainly detected in the fraction of $10,000{\~}1,000$ MWCO (molecular weight cut-off). The culture filtrate of Micrococous sp. LG-5 showed antimicrobial activity against Enterococcus faecalis, Escheiichia coli, Uebsiella pneunioniae and Vibrio altinolyticus, but did not show against Pseudomonas aeminosa, P. Buorescens, Salmonella typhi, Staphylococcus aureus, V. cholerae and V parahaemolyicus. The culture filtrate of Micrococcus sp. LG-5 was examined against 16 phytoplankton species and showed the algicidal activity against Ajexandzium tuarense, Eutreptiella Drnnastin, Gymnodinium catenatum, G. mikimotoi, G. sanguineum, eyodinium impuaicum, Heterocapsa triquetra, Heterosipa akashiwo, Prorocentrum micans and Pyraminonas sp.. However no algicidal effects of Micrococcus sp. LG-5 were observed against Chlamydomonas sp., Cylindrotheoa closterium, P. mininum, P. triestimum, Pseudonieschia sp. and Sczipuiella trochoidea. On the other hand, algicidal activity on the tested marinelivefood was not detected except for Isochrysis galbana. In addition, physiological responses of cultured olive flounder (Paralichthys oliraceus) exposed to $1 and 10{\%}$ of the culture filtrate of Micrococcus sp. LG-5 were measured. There were no clear changes in AST, GGT, creatinine, urea, total cholesterol, total protein, albumine, $Mg^(+2), Ca^(+2), Na^+, K^+, and Cl^-$. These results indicate that olive flounders were not affected when they were exposed to the culture filtrate of Micrococcus sp. LG-5.

  • PDF

Stress Responses of Cultured Fishes Elicited by Water Level Reduction in Rearing Tank and Fish Transference during Selection Process (양식어류의 선별과정중 수심감소와 어류의 수조이동에 따른 스트레스 반응)

  • HUR Jun Wook;CHANG Young Jin;LIM Han Kyu;LEE Bok Kyu
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.34 no.5
    • /
    • pp.465-472
    • /
    • 2001
  • The effects of water level reduction in rearing tank and fish transference during fish selection process on the stress response (hematological factors, cortisol, glucose, lactic acid and osmolality) of tank-reared olive flounder Paralichthys olivaceus of large (FL), small (FS) and Japanese croaker, Nibea japonica (JC) were examined in running seawater culture system. The water level of rearing unit was lowered from 33 cm to 8 cm in the course of 2 minutes in the water level reduction experiment. The fish were removed from rearing tank (12 ton) to 450 L tank in 30 seconds after capture in the fish transference experiment, In water level reduction, the hematocrit of FL was significantly increased from $14.6\%$ at beginning to $23.5\%$ after 10 hours, However, it decreased to the value of beginning after 46 hours. Plasma cortisol concentration of FL was the highest concentration (13.7 ng/mL) after 22 hours, but it decreased to 4.0 ng/mL at the end of experiment. Cortisol concentration of FS did not show any significant difference during the experiment. The cortisol concentration of JC were significantly higher at 4 hours (282.3 ng/mL) and 22 hours (350.5 ng/mL), Glucose concentration of JC was the highest (138.0 mg/dL) at 22 hours. Lactic acid concentration was not different between experimental groups. In the fish transference experiment, red blood cell of FL was increased from $1.9\times10^6\;cell/{\mu}\;L\;to\;4.2\times10^6\;cell/{\mu}L$ in 24 hours. Blood hemoglobin of JC were significantly elevated in 24 hours. At 1 hour after transference, plasma cortisol concentrations in both fish species were increased to 95.3 ng/mL in FL and 175.5 ng/mL in JC. Glucose concentration of JC was increased to 132.5 mg/dL at 1 hour, 129.5 mg/dL at 3 hours after transference.

  • PDF