• Title/Summary/Keyword: Oligodeoxyribonucleotides

Search Result 6, Processing Time 0.019 seconds

Chemical Synthesis of Oligodeoxyribonucleotides Using Paper Disk as a Support (Paper Disk를 지지체로 이용한 Oligodeoxyribonucleotides 화학적 합성)

  • Bong-Oh RO;Sung-Jun Kim;Dae-Hyun Shin
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.3
    • /
    • pp.355-363
    • /
    • 1993
  • The two deoxyribonucleotides, 5'-d(GAATTCCGGCCA) and 5'-d(CGAGCTGTC), were synthesized on disks of Whatmann chromatography paper (3MM) by the phosphite-triester method. The average yield of the dodecamer and the nonamer that was measured by trityl analysis is 76.1${\%}$ and 86.5${\%}$ respectively. Separation of the synthesized oligodeoxyribonucleotides were purified by HPLC. The two oligodeoxymers'bases were quantified by HPLC with snake venom phosphodiesterase and bacterial alkaline phosphatase. The numbers of bases were equal to the designed ones. The advantage of using a paper disk as a support allows us to synthesize many different oligodeoxyribenucleotides during one synthesis. This method is the most convenient synthetic technique to synthesize oligodeoxyribonucleotides easily and inexpensively in a relatively short time.

  • PDF

Construction of the Recombinant phbCAB Operon of Alcaligenes eutvtrphus for Accumulation of Poly-$\beta$-hydroxybu tyric Acid in Escherichia coli (Alcaligenes eutrophus phbCAB Operon의 재조합과 Poly-$\beta$-hydroxybutyric Aicd의 대장균내 축적)

  • 김경태;박진서;이용현;허태린;박해철
    • Microbiology and Biotechnology Letters
    • /
    • v.21 no.3
    • /
    • pp.221-228
    • /
    • 1993
  • In order to achieve poly-beta-hydroxybutyric acid (PHB) production using recombinant DNA in various host bacterial cells, the isolation of genes for PHB biosynthesis was attempted. As a result, a 5.2kb DNA fragment containing phbCAB operon of Alcaligenes eutrophus was isolated by colony hybridization using synthetic oligodeoxyribonucleotides as probes. The constructed recmbinant plasmid pSK(+)-phbCAB operon was transferred to Escherichia coli, and the obtained transformant accumulated considerable amount of PHB.

  • PDF

Synthesis and Characterization of Oligonucleotides Containing Site-Specific Bulky $N^2$-Aralkylated Guanines and $N^6$-Aralkylated Adenines

  • Moon, Ki-Young;Kim, Yeong-Shik
    • Archives of Pharmacal Research
    • /
    • v.23 no.2
    • /
    • pp.139-146
    • /
    • 2000
  • 7- Bromomethylbenz[a]anthracene is a known mutagen and carcinogen. The two major DNA adducts produced by this carcinogen, i.e., $N^2$-(benz[a]anthracen-7-yl methyl)-2'-deoxyguanosine (2, b[a]$a^2$G) and $N^6$-(benz[a]anthracen-7-ylmethyl)-2'-deoxyadenosine (4, b[a]$a^6$/A), as wel 1 as the simpler benzylated analogs,$N^2$-benzyl-2'deoxyguanosine (1, $bn^2$G) and $N^6$-benzyl-2'-deoxyadenosine (3, $bn^6$/A), were prepared by direct aralkylation of 2'-deoxyguanosine and 2'-deoxyadenosine. To determine the site-specific mutagenicity of these bulky exocyclic amino-substituted adducts, the suitably protected nucleosides were incorporated into 16-base oligodeoxyribonucleotides in place of a normal guanine or adenine residues which respectively are part of the ATG initiation codon for the lac Z' \alpha-complementation gene by using an in situ activation approach and automated phosphite triester synthetic methods. The base composition and the incorporation of the bulky adducts into synthetic oligonucleotides were characterized after purification of the modified oligonucleotides by enzymatic digestion and HPLC analysis.

  • PDF

Photo-controlled gene expression by fluorescein-labeled antisense oligonucleotides in combination with visible light irradiation

  • Ito, Atsushi;Kaneko, Tadashi;Miyamoto, Yuka;Ishii, Keiichiro;Fujita, Hitoshi;Hayashi, Tomonori;Sasaki, Masako
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.451-453
    • /
    • 2002
  • A new concept of "photo" -antisense method has been evaluated, where the inhibition of gene expression by the conventional antisense method is enhanced by photochemical binding between antisense oligonucleotides conjugated with photo-reactive compound and target mRNA or DNA. Fluorescein labeled oligodeoxyribonucleotides (F-DNA) was delivered to cell nuclei in the encapsulated form in multilamellar lecithin liposomes with neutral charge. F-DNA was previously shown to photo-bind to the complementary stranded DNA, and the delivery system using neutral liposome to be effective in normal human keratinocytes. In the present study, we used human kidney cancer G401.2/6TG.1 cell line to be advantageous in reproducible experiments. p53 was adopted as a target gene since antisense sequence information has been accumulated. The nuclear localization ofF-DNA was identified by comparing the fluorescence ofF-DNA with that of Hoechst 33258 under fluorescence microscope. After 7hr incubation to accumulate p53 protein induced by UV -B, p53 protein was quantified by Western blot. After 2hrs from F-DNA application, about 30% of cell population incorporated F-DNA in their nuclei with some morphological change possibly due to liposomal toxicity. Irradiation of visible light longer than 400nm from solar simulator at this time enhanced the inhibitory action of antisense F-DNA. The present results suggest that photo-antisense method is promising to control gene expression in time and space dependent manner. Further improvement of F-DNA delivery to cancer cells in the stability and toxicity is in progress. progress.

  • PDF

Effects of Multiple-target Anti-microRNA Antisense Oligodeoxyribonucleotides on Proliferation and Migration of Gastric Cancer Cells

  • Xu, Ling;Dai, Wei-Qi;Xu, Xuan-Fu;Wang, Fan;He, Lei;Guo, Chuan-Yong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.7
    • /
    • pp.3203-3207
    • /
    • 2012
  • Backgrounds: To investigate the inhibiting effects of multi-target anti-microRNA antisense oligonucleotide (MTg-AMOs) on proliferation and migration of human gastric cancer cells. Methods: Single anti-microRNA antisense oligonucleotides (AMOs) and MTg-AMOs for miR-221, 21, and 106a were designed and transfected into SGC7901, a gastric cancer cell line, to target the activity of these miRNAs. Their expression was analyzed using stem-loop RT-PCR and effects of MTg-AMOs on human gastric cancer cells were determined using the following two assay methods: CCK8 for cell proliferation and transwells for migration. Results: In the CCK-8 cell proliferation assay, $0.6{\mu}mol/L$ was selected as the preferred concentration of MTg-AMOs and incubation time was 72 hours. Under these experimental conditions, MTg-AMOs demonstrated better suppression of the expression of miR-221, miR-106a, miR-21 in gastric cancer cells than that of single AMOs (P = 0.014, 0.024; 0.038, respectively). Migration activity was also clearly decreased as compared to those in randomized and blank control groups ($28{\pm}4$ Vs $54{\pm}3$, P <0.01; $28{\pm}4$ Vs $59{\pm}4$, P < 0.01). Conclusions: MTg-AMOs can specifically inhibit the expression of multiple miRNAs, and effectively antagonize proliferation and migration of gastric cancer cells promoted by oncomirs.

Characterization of aqualysin I structure(a thermophilic alkaline Serine protease) of Thermus aquaticus YT-1 (Thermus aquaticus YT-1의 내열성 프로테아제 aqualysin I의 구조와 특징)

  • Kwon, Suk-Tae
    • Applied Biological Chemistry
    • /
    • v.31 no.3
    • /
    • pp.274-283
    • /
    • 1988
  • Aqualysin I is an alkaline serine protease which is secretet into the culture medium by Thermus aquaticus YT-1, an extreme thermophile. Aqualysin I was purified, and its partial amino acid sequence was determined. The gene encoding aqualysin I was cloned into E. coli using synthetic oligodeoxyribonucleotides as hybridization probes. The nucleotide sequence of the cloned DNA was determined. The primary structure of aqualysin I, deduced from the nucleotide sequenc, agreed with the determid amino acid sequences, including the $NH_2-$ and COOH terminal sequence of the tryptides derived from aqualysin I. Aqualysin I comprised 281 amino acid residues and its molecular mass was determined to be 28350. On alignment of the whole amino acid sequence, aqualysin I showed high sequence homology with the subtilisin type serine protease, and 43% identity with proteinase K, 37-30% with subtilisins and 34% with thermitase. Extremely high sequence identity was observed in the regions containing the active-site residues, corresponding to Asp32, His64 and Ser221 of subtilisin BPN'. Aqualysin I contains two disulfide bonds, Cys67-Cys99 and Cys163-Cys194, and these disulfide bonds seem to contribute to the heat stability of the enzyme. The determined positions of the twe disulfide bonds of aqualysin I agreed with those predicted previously on the basis of computer graphics of the crystallographic data for subtilisin BPN'. Therefore, these findings sugests that the three-dimensional structure of aqualysin I is similar to that of subtilisin BPN' Aqualysin I is produced as a lage precursor, which contains $NH_2-$ and COOH- terminal portions besides the mature protease sequence.

  • PDF