• Title/Summary/Keyword: Oils

Search Result 2,290, Processing Time 0.023 seconds

Fatty Acid Profile and Thermal Behavior of Fat-Rich Edible Insect Oils Compared to Commonly Consumed Animal and Plant Oils

  • Kasidate Chantakun;Tanyamon Petcharat;Saowakon Wattanachant;Muhammad Shahrim Bin Ab Karim;Pensiri Kaewthong
    • Food Science of Animal Resources
    • /
    • v.44 no.4
    • /
    • pp.790-804
    • /
    • 2024
  • This study compared the physicochemical properties of edible insect oils from silkworm (Bombyx mori) pupa (SP), sago palm weevil (Rhynchophorus ferrugineus) larva (PW), and bamboo caterpillar (Omphisa fuscidentalis; BC) to oils from chicken skin (CK), beef back fat (BF), pork back fat (PF), salmon belly (SB), sea bass belly (BB), coconut (C), and peanut (P). The fatty acid profiles and thermal behaviors (crystallization and melting) of the extracted oils were evaluated. PW and BC oils had more saturated fatty acids (SFAs) than CK, PF, SB, BB, and P oils. SP oil had equivalent SFA content to CK and BB oils. Insect oils exhibited similar monounsaturated fatty acid concentrations in all samples, except C oils. PW and BC oils exhibited a higher content of palmitoleic acid than the other oils. SP oils contained polyunsaturated fatty acids similar to those in SB and BB oils, which were higher than those in PW, BC, CK, BF, and PF oils. SP oil also exhibited the highest concentration of α-linolenic acid (C18:3 n-3). Arachidonic acid (0.01-0.02 g/100 g) in all insect oils was lower level compared to CK, BF, PF, SB, and BB oils. SP oil (0.03 g/100 g) exhibited a slightly higher level of eicosapentaenoic acid compared to PW (0.01 g/100 g) and BC (0.01 g/100 g) oils. The insect oils were liquid at ambient temperature, solid below -15℃, and required less energy (∆Hm-max) for melting than other samples. This study indicated that insects, particularly SP, could serve as an alternative source of fat to meet its growing demand.

Chemical Constituents of Essential Oils Possessing Anti-Influenza A/WS/33 Virus Activity

  • Choi, Hwa-Jung
    • Osong Public Health and Research Perspectives
    • /
    • v.9 no.6
    • /
    • pp.348-353
    • /
    • 2018
  • Objectives: This study was conducted to determine whether essential oils had anti-influenza A/WS/33 virus activity and whether there were specific compounds associated with this activity. Methods: There were 63 essential oils evaluated for anti-influenza (A/WS/33 virus) activity using a cytopathic effect reduction method. The chemical composition of the anti-influenza essential oils was phytochemically analyzed by gas chromatography-mass spectrometry. Results: The antiviral assays demonstrated that 11 of the 62 essential oils ($100{\mu}g/mL$) possessed anti-influenza activity, reducing visible cytopathic effects of influenza A/WS/33 virus activity by > 30%. Furthermore, marjoram, clary sage and anise oils exhibited anti-influenza A/WS/33 virus activity of > 52.8%. However, oseltamivir (the anti-influenza A and B drug), showed cytotoxicity at the same concentration ($100{\mu}g/mL$) as the essential oils. The chemical composition detected by GC-MS analysis, differed amongst the 3 most potent anti-viral essential oils (marjoram, clary sage and anise oils) except for linalool, which was detected in all 3 essential oils. Conclusion: This study demonstrated anti-influenza activity in 11 essential oils tested, with marjoram, clary sage and anise essential oils being the most effective at reducing visible cytopathic effects of the A/WS/33 virus. All 3 oils contained linalool, suggesting that this may have anti-influenza activity. Further investigation is needed to characterize the antiviral activity of linalool against influenza A/WS/33 virus.

Oxidative Stability of Sesame Blended Oils (참기름 혼합유의 산화안정성)

  • 맹영선;박혜경
    • Korean journal of food and cookery science
    • /
    • v.5 no.2
    • /
    • pp.51-62
    • /
    • 1989
  • In the present study, an attempt was made to investigate the oxidative stability of the various sesasme blended oils. Sesame blended oils were perpared by mixing sesame oil with various vegetalbe oils (soybean oil, corn oil, ricebran oil, rapeseed oil, cottonseed oil, and perilla oil) in a ratio of 3:7 (w/w). Fatty acid composition and some of physico-chemical characteristics of the sesame blended oils and vegetable oils including sesame oil were determined before the oxidation experiments. The fatty acid compositions and the physico-chemical characteristics of the vegetable oils changed by blending the oils with sesame oil and the extent of change varied with the type of oil. Particularly, the iodine value of the vegetable oils decreased significantly by sesame oil blending. The sesame blended oils and the vegetable oils including sesame oil were oxidized at $45^{\circ}C$ for 25 days in a dark place, and at $35^{\circ}C$ for 12 days under the irradiation of incandescent electric lamp (40 W). During the oxidation, some physico-chemical characteristics of the oils were determined to evaluate the oxidative stability. Based on the changes of peroxide values, the oxidative stability of the vegetable oils was improved by sesame oil blending.

  • PDF

Effect of extracting solvents on physicochemical properties of vegetable seed oils and their suitability for industrial applications

  • Qeency Etim Essien;Michael Akomaye Akpe;Ofonime Okon Udo;Collins Irechukwu Nwobodo
    • Food Science and Preservation
    • /
    • v.31 no.4
    • /
    • pp.554-564
    • /
    • 2024
  • The effects of extracting solvents on the physicochemical properties of vegetable oils extracted from four oil seed plants, namely Dennettia tripetala, Dacryodes edulis, Cola rostrata, and Persea americana, were studied. Vegetable oils were extracted using the Soxhlet method. The oils were used for determining % yield, acid value (AV), iodine value (IV), saponification value (SV), electrical conductivity (EC), and pH. The results revealed that the range of the mean % yield of oils extracted using hexane, carbon tetrachloride (CCl4), petroleum ether, acetone, and methanol, respectively, were 7.5-12.0, 9.0-22.0, 7.5-27.5 and 12.0-37.5 for the four oil Seeds respectively. Mean AVs of oils in mg KOH/g across the solvents were 3.1-3.7, 3.1-3.8, 2.5-3.9 and 2.4-2.8 for Cola rostrata, Dacryodes edulis, Dennettia tripetala and Persea americana respectively. Mean IVs of oils in gI2/100 g across the solvents were 33.25-33.97, 33.06-33.35, 32.06-33.76 and 33.00-34.00 for the four oil seeds, respectively. Mean SVs in mg KOH/g across the solvents were 191.00-197.44, 190.74-198.31, 194.11-202.52, and 182.23-199.44, respectively. Mean EC values ranged 0.31-0.32, 0.30-0.33, 0.30-0.33, and 0.31-0.32 µS/cm across the solvents, respectively. Mean pH values ranged from 6.1-6.4, 4.6-6.3, 6.2-6.4, and 6.1-6.3 across the solvents for the oils, respectively. The AVs of the oils suggest that they are edible oils, the IVs classify the oils as non-drying oils suitable for paint making, and SVs reveal that the oils are good for soap making. Hexane, petroleum ether, and CCl4 are suitable for oil extraction industrially, while D. edulis, D. tripetala, and P. Americana oils are economically viable oil resources due to their high percentage yield, SV and IV.

Biodegradation Rate of Recycling Soap Prepared from Non-Cooking Oils (폐식용유로 제조된 재생비누의 생분해 속도)

  • 신춘환;김희숙;허근태
    • Journal of Environmental Science International
    • /
    • v.5 no.1
    • /
    • pp.83-91
    • /
    • 1996
  • A recycling soap was prepared from non-cooking oils. The effects of physlcal and chemical properties of the recycling soap on biodegradation are expected to be different due to the thermal histories of the non-cooking oils. Therefore, the biodegradation rate of the recycling soap was studied by using Klebssella Pneumoniae(K. pneumoniae), and the growth rate of K. pnewoniae in soap solution was observed. The biodegradation rate of the recycling soap appeared to be slower as the thermal histories of the non-cooking oils became larger. This might be resulted from hydrolysis, in which the ester bonds in the oils are broken to produce hydroxyl group. It was also observed that the growth rate of the microorganism decreased with the increase in the thermal histories of the oils. As a result, it is desired that recycling soap should be produced from the non-cooking oils with the prober ranges of thermal histories to reduce water contamination. The non-cooking oils with larger thermal histories are considered to be recycling through the cracking process before used. Key Words : non-cooking oils, recycling soap, thermal history, biodegradation, microorganism growth.

  • PDF

Applications of High-Quality Base Oil to Specialty Lubricants

  • Moon, Woo-Sik
    • KSTLE International Journal
    • /
    • v.3 no.1
    • /
    • pp.30-37
    • /
    • 2002
  • There have been significant improvements in base oil quality in order to satisfy recent market needs. In particular requirements of passenger car motor oils have been leading the trend. Now, high quality base oils such as VHVI base oils and PAOs are to be formulated in order to meet the tight volatility specifications. The severe hydrocracking, hydro-isomerized dewaxing and hydro-finishing process with noble-metal based catalysts (named UCO lube process) developed by SK corporation has been introduced as one of economic hydroprocessing routes to produce high quality VHVI base oils and food grade white mineral oils from fuels hydrocracker residue. Product quality of UCO lube process is similar to PAO in. general performances and therefore provides satisfactory performance far all straightforward applications in general lubricants. However, when applied to specialty lubricants like transformer oils, spray oils and coning oils, severely hydrocracked base oils are known to have various compatibility problems with gas or surfactants formulated in them. These problems are related to the difference in their composition; inherent high paraffin contents and lack of dissolving ability, Fortunately, it was found that excellent specialty lubricants could be made by carefully selecting and formulating adequate additives and/or aromatic compounds. Moreover, these specialties with high quality VHVI base oils ofter various advantages over conventional base oil based products.

Lubricating Performance of Polyalkylene Glycol and Polyolester Base Oils analyzed from the Model of Interaction between Environmentally adapted Polar base oils and Additive (TCP) (환경친화적인 극성기유와 첨가제(TCP)의 상호작용모델로부터 해석된 Polyalkylene glycol 및 Polyolester Base Oil의 윤활작용)

  • ;Masabumi Masuko
    • Tribology and Lubricants
    • /
    • v.17 no.2
    • /
    • pp.146-152
    • /
    • 2001
  • Environmentally adapted synthetic base oils of polyalkylene glycols (PAGs) and polyol esters (POEs) show a high polarity because of their functional groups containing oxygen atom. The lubricating performance of these polar base oils was investigated by using a four-ball tribometer under boundary lubrication condition. Four polyalkylene glycols and five polyol ester base oils were used as sample base oils of high polarity. A mineral oil (MO) and alkylnaphthalene (AN) were used as low polarity base oils. Tricrecylphosphate (TCP) was added to all the base oils, in the range of 10 mmol/L-2000 mmol/L, as an antiwear additive. All the TCP-for-mutated base oils showed optimum concentration characteristics for minimizing wear. The order of optimum concentration of all the base oils was in a good accordance with the order of relative stability of TCP in base oils. The interaction model on solvation between additive and different polar base oils can expect the stability order of TCP. Thus, the model on solvation can explain well the order of optimum concentration of all the base oils, by using the effect of polarity (dielectric constant, $\varepsilon$) and molecular size (molecular weight, MW) of them on stability of TCP in polar base oils. Finally, a good correlation of the optimum concentration for all the base oils was obtained when it was arranged as a function of C∝(M $W_{Base Oil}$/M $W_{TCP}$)$^{-2}$.71/.($\varepsilon$$_{Base Oil}$)$^{3.38}$ by these two parameters.s..

Dissolved Gas Analysis of Environment-Friendly Vegetable Insulating Oils (친환경 식물성 절연유의 유중가스 분석)

  • Choi, Sun-Ho;Kim, Kwan-Sik;Huh, Chang-Su
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.4
    • /
    • pp.238-243
    • /
    • 2015
  • The vegetable insulating oils are substitute for the mineral oil in power transformer. Vegetable insulating oils has higher flash/fire point and biodegradability than conventional mineral oils. In this paper, we investigated the dissolved gas analysis of vegetable oils. In the experiment, I had to accelerated aging under the same conditions mineral oil and vegetable oils. Accelerated aging proceeded to about 100% of the life of oil-filled transformer. In addition, we performed gas analysis of insulating oil of accelerated aging progress. The experiment results of the five gases was measured with the exception of Hydrogen and Acetylene. The mineral oil and vegetable oils gas is generated in a similar tendency depending on the accelerated aging. As a result, vegetable oils, can be dissolved gas analysis by method such as mineral oil.

Activity of Essential Oils Against Bacillus subtilis Spores

  • Lawrence, Hayley A.;Palombo, Enzo A.
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.12
    • /
    • pp.1590-1595
    • /
    • 2009
  • Alternative methods for controlling bacterial endospore contamination are desired in a range of industries and applications. Attention has recently turned to natural products, such as essential oils, which have sporicidal activity. In this study, a selection of essential oils was investigated to identify those with activity against Bacillus subtilis spores. Spores were exposed to 13 essential oils, and surviving spores were enumerated. Cardamom, tea tree, and juniper leaf oils were the most effective, reducing the number of viable spores by 3 logs at concentrations above 1%. Sporicidal activity was enhanced at high temperatures ($60^{\circ}C$) or longer exposure times (up to 1 week). Gas chromatography-mass spectrometry analysis identified the components of the active essential oils. However, none of the major oil components exhibited equivalent activity to the whole oils. The fact that oil components, either alone or in combination, did not show the same level of sporicidal activity as the complete oils suggested that minor components may be involved, or that these act synergistically with major components. Scanning electron microscopy was used to examine spores after exposure to essential oils and suggested that leakage of spore contents was the likely mode of sporicidal action. Our data have shown that essential oils exert sporicidal activity and may be useful in applications where bacterial spore reduction is desired.

Physical and Chemical Characteristics of Sesame Oils by Kinds of Sesame (참깨 종류에 따른 참기름의 이화학적 특성)

  • Sin, Seung-Ryeol;Kim, Gyeong-Tae;Song, Jun-Hui
    • Food Science and Preservation
    • /
    • v.4 no.3
    • /
    • pp.287-293
    • /
    • 1997
  • This study was investigated to viscosity, color, chemical properties, and lipid and fatty acid composition for examination of physical and chemical characteristics of sesame oils. Yield of sesame oil was higher in Ansan sesame than that of Chinese and Dambaek sesame. Viscosity of sesame oils was higher than that of shame oils from Dambaek and Chinese sesame, but turbidity and sedimentation rate were higher in Dambaek's sesame oil than those of Ansan's and Chinese sesame oils. In the acid value, saponification value and iodine value of sesame oils, and chemical characteristics of Dambaek's sesame oil were better than those of the others. The neutral, glycolipid and phosholipid contents of sesame oils were 91.1∼92.1, 2.5∼3.5 and 5.5∼6.4%, respectively. The major fatty acids of sesame oils were oleic, linoleic palmitic and stearic acid. The content of oleic acid was higher in Dambaek's and Ansan's sesame oil than that of Chinese sesame oil, and the content of linoleic acid was higher in Chinese sesame oil than the others. The fatty acid composition of neutral lipid, glycolipid and phospholipid were similar to those of total lipid. The ratio of unsaturated fatty acid and saturated fatty acid was higher in Korean sesame oils than those in Chinese sesame oil. The mineral(Mg, Cu, Fe, In, Al, Mn) content of Korean sesame oils was higher than that of Chinese sesame oil. and heavy metals(Cu, Ag, Pb, Cd, As) were not detected.

  • PDF