• 제목/요약/키워드: Oil-in-water emulsion

검색결과 386건 처리시간 0.022초

Antioxidant Activity of γ-Oryzanol and Synthetic Phenolic Compounds in an Oil/Water (O/W) Emulsion System

  • Kim, Joo-Shin
    • Preventive Nutrition and Food Science
    • /
    • 제12권3호
    • /
    • pp.173-176
    • /
    • 2007
  • ${\gamma}-Oryzanol$ is one of the chain breaking antioxidants. Both sterol (triterpene) and phenolic hydroxyl groups in the structure of ${\gamma}-oryzanol$ may be responsible for its antioxidative function. We hypothesize that ${\gamma}-oryzanol$ is more effective in preventing the autoxidation of polyunsaturated fatty acid (PUFA) than the synthetic phenolic compounds in an oil/water (O/W) emulsion system. The antioxidative effectiveness of different concentrations of ${\gamma}-oryzanol$ and synthetic antioxidants was evaluated at different incubation times (0, 4, 8, 16, and 32 h) by measuring both the formation of hydroperoxides and the decomposition product of hydroperoxides (hexanal) in each emulsion system. Overall, the order of effectiveness of various antioxidants for inhibiting the formation of hydroperoxide in the O/W emulsion was: ${\gamma}-oryzanol$> tert-butylhydroquinone (TBHQ)> butylated hydroxytoluene (BHT)> butylated hydroxyanisole (BHA). O/W emulsion with selective lower concentrations of ${\gamma}-oryzanol$ showed better effectiveness than that with higher concentration of synthetic antioxidants. However, the ability of both ${\gamma}-oryzanol$ and synthetic antioxidants to decompose hydroperoxide was similar. ${\gamma}-Oryzanol$ was more effective antioxidant than the synthetic phenolic compounds in preventing the formation of hydroperoxide in the O/W emulsion system.

Enhanced In-situ Mobilization and Biodegradation of Phenanthrens from Soil by a Solvent/Surfactant System

  • Kim, Eun-Ki;Ahn, Ik-Sung;L.W.Lion;M.L.Shuler
    • Journal of Microbiology and Biotechnology
    • /
    • 제11권4호
    • /
    • pp.716-719
    • /
    • 2001
  • The mobilization and biodegradation of phenanthrene in soil was enhanced by using paraffin oil, which was stabilized by the addition of a surfactant (Brji 30). The ratio of paraffin oil/Brij 30 was determined by measuring the change in the critical micelle concentration. When only surfactant was used, the stabilized paraffin oil emulsion could dissolve more phenanthrene in the water phase. Column experiment showed increased phenanthrene mobilization from the contaminated soil. The phenanthrene mobilized in the paraffine oil/Brij 30 emulsion was biodegraded faster than that in water phase or surfactant solution. This result indicates that a paraffin oil/surfactant system can be effectively used for the removal of PAH from contaminated soil.

  • PDF

Bulk와 Emulsion System에서 유지에 대한 항산화제와 유화제의 항산화효과 (Antioxidative Activity of Some Antioxidants and Emulsifiers in Bulk and Emulsion Systems)

  • 김인원;신동화;장영상
    • 한국식품과학회지
    • /
    • 제31권4호
    • /
    • pp.1077-1083
    • /
    • 1999
  • 다른 유지상(bulk, oil-in-water)에 친수성 항산화제로서 gallic acid를 소수성 항산화제로서 ${\delta}-tocopherol$을 처리하고, HLB(hydrophilic lipophilic balance)에 따른 유화제를 처리하여 기질의 차이에 따른 항산화제와 유화제가 유지의 산화안정성에 미치는 정도를 실험하였다. 유지는 정제하지 않은 콩기름을 사용하였고 bulk상에서 12일 경과시 gallic acid를 첨가한 처리구의 유도기간이 Rancimat method로 측정시 4.13인데 비해 ${\delta}-tocopherol$을 첨가한 처리구의 유도기간은 1.18로 친수성 항산화제를 처리한 것이 3배 정도의 유지산화지연효과를 보였다. 또한 유화제의 처리에 있어서는 lecithin을 처리한 것의 유도기간이 5.07로 tween 20 처리 2.23, span 60의 경우 2.9인것에 비해 산화안정성면에서 우수하였다. 이와 같은 결과는 과산화물가와 공액이중산함량에서도 같은 경향을 보였다. Emulsion상(oil-in-water)에서도 bulk상과 같은 경향을 보였으며 이것은 emulsion상에 소수성 항산화제를 처리한 것이 유지 산화안정성면에서 더 효과적이라는 결과와는 차이가 있는데 기질의 차이, 즉 정제하지 않은 시판 콩기름을 사용한 것에 의한 차이인 것 같다. Emulsion상에서 유지방구의 크기는 저장하면서 모든 처리구에서 작아지는 경향을 보였으며, 이것은 유지방구의 크기가 작아지면서 표면적이 증가하고 따라서 공기와 접하는 면이 커지게 되므로 유지상은 안정해지나 산화는 더 촉진되므로 상의 안정과 산화안정성의 적절한 설정기준이 필요할 것으로 보인다.

  • PDF

에멀젼 연료의 안정성에 대한 연구 (A study of Stability of Emulsion Fuel)

  • 김문찬
    • 한국응용과학기술학회지
    • /
    • 제37권5호
    • /
    • pp.1330-1343
    • /
    • 2020
  • 본 연구에서는 근해에서 선박유로 많이 사용되는 MDO(Marine Diesel Oil)를 물과 함께 혼합하고 여기에 유화제를 첨가하여 물이 10 ~ 20% 첨가된 에멀젼 연료를 만들었다. 그리고, 이 에멀젼 연료의 분산 안정성을 측정하였다. 에멀젼 연료의 분산 안정성은 30℃, 45℃, 60℃에서 10일간 평가하였다. 에멀젼 연료의 안정성은 MDO-10 > MDO-13 > MDO-16 > MDO-20 순서로 물 함량이 적은 순으로 안정한 것으로 나타났다. 한편 제조된 에멀젼 연료가 실제로 엔진에서 사용 가능한지를 엔진 다이나모메터를 사용하여 실험하였다. 유화시킨 MDO 유화물은 선박용 연료로 사용이 가능하였다. 대기오염에 대하여 물이 16% 이상 첨가된 시료들은 50% 이상의 부하 영역에서 매연은 50% 이상 감소하였으며, 질소산화물은 20% 정도의 저감 효과가 있었다.

HLB 변화와 전상유화에 의해 형성된 에멀젼의 안정성 (The Stability of Emulsions Formed by Phase Inversion with Variation of HLB of Surfactant)

  • 박수남;양희정;김재현;조완구
    • 한국응용과학기술학회지
    • /
    • 제26권2호
    • /
    • pp.117-123
    • /
    • 2009
  • Caprylic/Capric triglyceride-in-water emulsions stabilized by Nikkol HCO-60 and HCO-10 were prepared using emulsion inversion point method at different HLB values. Emulsions with various droplet sizes were formed, and emulsion inversion point was detected by electrical conductivity. The change in emulsion droplet sizes and long term stability were monitored using laser scattering method and visual method. The droplet sizes and stability of emulsions were affected by HLB of surfactant. At emulsion inversion point, the water volume fraction increased as the HLB of surfactants decreased. According to our analysis, this resulted from a tendency of forming the W/O (water-in-oil) emulsion as the HLB of surfactants was decreased. The emulsion inversion point was clearly detected by the microscope and the electric conductivity meter. Nanometer-sized emulsion was obtained at the optimum HLB by using emulsion inversion point method. The main pattern of instability of emulsions in HLB 12 and 13 systems was Ostwald ripening. However, The patterns of instability of emulsions below 11 of HLB systems were Ostwald ripening and coalescence. All emulsions produced with surfactants in the range of HLB 8-13, creaming caused by density difference between water phase and oil phase.

Emulsion Electrospinning of Hydrophobic PTFE-PEO Composite Nanofibrous Membranes for Simple Oil/Water Separation

  • Son, Seo Ju;Hong, Seong Kyung;Lim, Geunbae
    • 센서학회지
    • /
    • 제29권2호
    • /
    • pp.89-92
    • /
    • 2020
  • Polytetrafluoroethylene (PTFE) fibers are widely used in the textile industry, filter media, membrane distillation, electronic appliances, and construction. In this study, PTFE-polyethylene oxide (PEO) fibrous membranes were fabricated by emulsion electrospinning; subsequently, pure PTFE nanofibers were obtained via sintering. PTFE-PEO electrospinning solutions were prepared using different weight ratios to determine the optimized condition. As the ratio of the PEO increased, the fiber structure improved. Scanning electron microscopy and Fourier-transform infrared spectroscopy observations indicate that PEO is removed and PTFE fused gradually to form bonds among them during sintering. The obtained pristine PTFE membrane demonstrated hydrophobicity at 143.6° water contact angle and oleophilicity at 0° oil contact angle, which is known to be utilized for oil/water separation. A simple separation experiment was performed to remove oil droplets from water. The PTFE membrane exhibited good chemical stability and a high surface-area-to-volume nanofiber ratio. These excellent properties suggest that it is applicable to oil/water separation in harsh chemical environments.

Antioxidative capacity of hydrolyzed rapeseed cake extract and oxidative stability of fish oil-in-water emulsion added with the extract

  • Lee, A-Young;Lee, Jeung-Hee
    • 한국식품저장유통학회지
    • /
    • 제24권4호
    • /
    • pp.529-535
    • /
    • 2017
  • Rapeseed cake was extracted with 80% ethanol and then fractionated with $H_2O$ (fraction I) as well as with 30% (II), 50% (III), 70% (IV), and 100% ethanol (V). Total phenolic content (TPC), 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity, ferric-reducing antioxidant potential, and Trolox equivalent antioxidant capacity were in the order of fractions II > III > I > IV > V. The three fractions with high antioxidant activities and TPC (I, II, and III) were pooled and hydrolyzed by NaOH solution, resulting in 18.97 mg sinapic acid/g hydrolyzed extract and 21- and 2.2-fold increases in TPC and DPPH radical scavenging activity, respectively. Hydrolyzed rapeseed cake extracts (200, 500, and 1,000 ppm) and catechin (200 ppm) as a comparison were added to 10% fish oil-in-water emulsion, and their effects on oxidative stability were investigated by measuring hydroperoxide values (PV) during refrigerated storage. PVs were significantly lower in the emulsions with added hydrolyzed extract as compared to the control (p<0.05) and significantly decreased with increasing extract concentration (p<0.05) over a period of 29 days. The emulsion added with hydrolyzed extract showed higher PV than that added catechin at the same concentration (200 ppm) during 13-22 days (p<0.05), but after then, the PV was not significantly different (p>0.05). This study indicates that hydrolyzed rapeseed cake extract rich in sinapic acid may inhibit oxidation in a fish oil-in-water emulsion in a concentration-dependent manner.

Gastrointestinal Absorption of Phenytoin from on Oil-in-water Microemulsion

  • Kwon, Kwang-Il;Bourne, David-W.A.
    • Archives of Pharmacal Research
    • /
    • 제20권5호
    • /
    • pp.480-485
    • /
    • 1997
  • The absorption profile of phenytoin Na emulsion were examined compared to that of phenytoin suspension after oral administration in the rat. The corn oil-in-water emulsion, particle size of $184{\pm}$57.8 nm, was prepared using a microfludizer, and phenytoin Na added by shaft homogenizer. The phenytoin emulsion or suspension, 100 mg/kg, were intubated intragastrically using oral dosing needle and blood samples were withdrawn via an indwelling cannula from the conscious rat. Plasma concentrations of phenytoin were measured with HPLC using phenacetin as an internal standard. The plasma concentration versus time data were fitted to a one compartment open model and the pharmacokinetic parameters were calculated using the computer program, Boomer. The phenytoin plasma concentrations from the emulsion at each observed time were about 1.5-2 times higher than those from the suspension, significantly at time of 5, 6 and 7 hr after administration. The absorption $(k_a)$ and elimination rate constant $(k_e)$ were not altered significantly, however the AUC increased from 65.6 to $106.7{\mu}ghr/ml$ after phenytoin suspension or emulsion oral administration, respectively. From an equilibrium dialysis study, the diffusion rate constant $(k_{IE})$ was considerably higher from the phenytoin Na emulsion $(0.0439 hr{-1})$ than phenytoin suspension $(0.0014 hr{-1})$.

  • PDF

오일-물-오일 에멜젼막의 Disjoining Pressure에 관한 연구 (Disjoining Process Isotherms for oil-water-oil Emulsion Films)

  • 조완구
    • 대한화장품학회지
    • /
    • 제23권2호
    • /
    • pp.71-96
    • /
    • 1997
  • We have used a novel liquid surface forces apparatus to determine the variation of disjoining pressure with film thickness for dodecane-water-dodecane emulsion films. The LSFA allows measurement of film thicknesses in the range 5-100 nm and disjoining pressure from 0-1500 Pa. Disjoining pressure isotherms are given for films stabilised by the nonionic surfactnat n-dodecyl pentaoxyethylene glycol ether$(C_{12}E_5)$ and n-decyl-$\beta$-D-glucopyranoside($C_{10}- $\beta$-Glu)$ and the anionic surfactant sodium bis(2-ethylhexyl) sulphosuccinate(AOT) in the presense of added electrolyte. For $C_{12}E_5$ and AOT, the emulsion films are indefinitely stable even for the highest concentration of NaCl tested (136.7 Nm) whereas the $C_{10}-{eta}-Glu$ film shows coalescence at this salt concentration. For film thicknesses greater than approximately 20 nm with all three surfactants, the disjoining pressure isotherms are reasonably well described in terms of electrostatic and van der Waals, forces. For the nonionic surfactant emulsion films, the charge properties of the monolayers are qualitatively similar to those seen for foam films. For AOT emulsion films, the monolayer surface potentials estimated by fitting the isotherms are similar to the values of the zeta potential measured for AOT stabilised emulsion droplets. For thin emulsion films certain systems showed isotherms which suggested the presence of an additional repulsive force with a range of approximately 20 nm.

  • PDF

Water/Oil 에멀젼 연료가 배출가스에 미치는 영향 (It's effects for engine emission of water/oil emulsified fuel)

  • 김문찬;이창숙
    • 분석과학
    • /
    • 제21권3호
    • /
    • pp.159-166
    • /
    • 2008
  • 본 연구에서는 water/oil 유화연료를 제조하여 제조된 연료의 점도, 밀도, 최적의 조사시간, 유화 안정성 등의 유화연료 특성 및 배기배출물 특성인 NOx, THC, CO의 농도와 smoke density를 측정하였다. 유화연료는 경유, 물, 유화제를 첨가한 후 homogenizer와 초음파 발생장치를 일정시간 조사하여 제조하였고, 배출가스 시험은 2476 cc diesel engine을 사용하여 engine dinamo meter로 실험하였다. 유화연료에서 함수율이 증가할수록 밀도가 증가하였으며, 점도는 함수율 60%까지는 W/O type이 형성되어 증가하다가 70%에서는 O/W type이 형성되어 감소하였다. 배출가스 시험결과 함수율이 증가할수록 NOx 농도와 smoke density는 감소하고, THC와 CO 농도는 증가하였다. 출력감소 시험 결과 함수율이 증가할수록 배출온도와 출력이 감소하였다. 위의 결과로부터 압축착화 디젤기관에 유화연료를 사용하는 것은 NOx와 smoke를 제거하는 효과적인 방법이라고 사료되어진다.