• Title/Summary/Keyword: Oil-gas production

Search Result 270, Processing Time 0.026 seconds

The developments of heavy hydrocarbon reformer for SOFC

  • Bae, Jung-Myeon
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.58.2-58.2
    • /
    • 2012
  • Heavy hydrocarbon reforming is a core technology for "Dirty energy smart". Heavy hydrocarbons are components of fossil fuels, biomass, coke oven gas and etc. Heavy hydrocarbon reforming converts the fuels into $H_2$-rich syngas. And then $H_2$-rich syngas is used for the production of electricity, synthetic fuels and petrochemicals. Energy can be used efficiently and obtained from various sources by using $H_2$-rich syngas from heavy hydrocarbon reforming. Especially, the key point of "Dirty energy smart" is using "dirty fuel" which is wasted in an inefficient way. New energy conversion laboratory of KAIST has been researched diesel reforming for solid oxide fuel cell (SOFC) as a part of "Dirty energy smart". Diesel is heavy hydrocarbon fuels which has higher carbon number than natural gas, kerosene and gasoline. Diesel reforming has difficulties due to the evaporation of fuels and coke formation. Nevertheless, diesel reforming technology is directly applied to "Dirty fuel" because diesel has the similar chemical properties with "Dirty fuel". On the other hand, SOFC has advantages on high efficiency and wasted heat recovery. Nippon oil Co. of Japan recently commercializes 700We class SOFC system using city gas. Considering the market situation, the development of diesel reformer has a great ripple effect. SOFC system can be applied to auxiliary power unit and distributed power generation. In addition, "Dirty energy smart" can be realized by applying diesel reforming technology to "Dirty fuel". As well as material developments, multidirectional approaches are required to reform heavy hydrocarbon fuels and use $H_2$-rich gas in SOFC. Gd doped ceria (CGO, $Ce_{1-x}Gd_xO_{2-y}$) has been researched for not only electrolyte materials but also catalysts supports. In addition, catalysts infiltrated electrode over porous $La_{0.8}Sr_{0.2}Ga_{0.8}Mg_{0.2}O_3-{\delta}$ and catalyst deposition at three phase boundary are being investigated to improve the performance of SOFC. On the other hand, nozzle for diesel atomization and post-reforming for light-hydrocarbons removal are examples of solving material problems in multidirectional approaches. Likewise, multidirectional approaches are necessary to realize "Dirty energy smart" like reforming "Dirty fuel" for SOFC.

  • PDF

Study on Water / Energy / Mutual-changing Technology by RO/PRO Process (RO/PRO 공정에 의한 물/에너지/상호변환기술에 관한 연구)

  • Choi, Youngkwon;Yun, Taekgeun;Sohn, Jinsik;Lee, Sangho;Choi, June-Seok
    • The KSFM Journal of Fluid Machinery
    • /
    • v.16 no.1
    • /
    • pp.61-65
    • /
    • 2013
  • Water is an integral part of energy production because it is used directly in many power generation systems such as hydroelectric power plants and thermoelectric power plants. Water is also used extensively in energy-resource extraction, oil, natural gas, and alternative fuels refining and processing. Recently, osmotic power systems using seawater and freshwater has been also investigated to produce electricity in a sustainable way. This study focused on the use of RO and PRO for the mutual conversion of water and energy. This system allows the production of water from seawater if there is not enough water. It can also generate electricity from salinity gradient of brine water and fresh water if there is not enough energy. To demonstrate the feasibility of this technology, a set of laboratory-scale experiments were carried out using a specially-designed RO/PRO system. The efficiency of energy conversion was theoretically estimated based on the results from the experiments. The results indicated that water and energy could be easily converted using a single device. Nevertheless, a lack of optimum membrane for this purpose was identified as a major barrier for practical application.

Model analysis for production and utilization of hydrogen energy from wind power and solar cell (풍력-태양전지에 의한 수소에너지 생산과 이용 모델 분석)

  • Lee, Kee Mun;Park, Chang Kwon;Jeong, Kwi Seong;Oh, Byeong Soo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.12 no.4
    • /
    • pp.239-246
    • /
    • 2001
  • Fossil fuel such as oil and natural gas has been used and will be no longer supplied enough to demand in the beginning of thisg century. The use of the fuel makes a lot of environmental pollution to threaten human being's health especially in big cities and produces a lot of $CO_{2}$ to make green house effect of the earth. It is the time to use clean fuel such as hydrogen to prevent the expected energy crisis and the pollution. A new engine such as fuel cell can be used instead of the conventional internal combustion engine with 2 to 3 times higher efficiency of the conventional engine. The fuel cell uses hydrogen and oxygen and produces electric energy and pure water, which is a calm engine without air pollution. In big cities the city buses and the taxies powered by hydrogen fuel cells are suggested to be operated for clean environment. The energy and cost analysis performed for hydrogen and electricity production from wind power and solar cell.

  • PDF

Local dynamic buckling of FPSO steel catenary riser by coupled time-domain simulations

  • Eom, T.S.;Kim, M.H.;Bae, Y.H.;Cifuentes, C.
    • Ocean Systems Engineering
    • /
    • v.4 no.3
    • /
    • pp.215-241
    • /
    • 2014
  • Steel catenary riser (SCR) is a popular/economical solution for the oil/gas production in deep and ultra-deep water. The behavioral characteristics of SCR have a high correlation with the motion of floating production facility at its survival and operational environments. When large motions of surface floaters occur, such as FPSO in 100-yr storm case, they can cause unacceptable negative tension on SCR near TDZ (touch down zone) and the corresponding elastic deflection can be large due to local dynamic buckling. The generation, propagation, and decay of the elastic wave are also affected by SCR and seabed soil interaction effects. The temporary local dynamic buckling vanishes with the recovery of tension on SCR with the upheaval motion of surface floater. Unlike larger-scale, an-order-of-magnitude longer period global buckling driven by heat and pressure variations in subsea pipelines, the sub-critical local dynamic buckling of SCR is motion-driven and short cycled, which, however, can lead to permanent structural damage when the resulting stress is greatly amplified beyond the elastic limit. The phenomenon is extensively investigated in this paper by using the vessel-mooring-riser coupled dynamic analysis program. It is found that the moment of large downward heave motion at the farthest-horizontal-offset position is the most dangerous for the local dynamic buckling.

Studies on Lao-Chao Culture Filtrate for a Flavoring Agent in a Yogurt-Like Product

  • Liu, Yi-Chung;Chen, Ming-Ju;Lin, Chin-Wen
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.4
    • /
    • pp.602-609
    • /
    • 2002
  • Lao-chao is a traditional Chinese fermented rice product with a sweet and fruity flavor, containing high levels of glucose, a little alcohol and milk-clotting characteristics. In order to optimize commercial production of lao-chao, Rhizopus javanicus and Saccharomyces cerevisiae were selected as the mold and yeast starter, respectively. A commercial mixed starter (chiu-yao) was used as control. Fermentation of the experimental combination revealed a sharp drop in pH (to 4.5) on the fourth day, remaining constant thereafter. Content of reducing sugars gradually decreased throughout the entire fermentation period. Of the free amino acids, higher quantities of alanine, leucine, proline, glutamic acid, glutamine and $NH_3$ were noted. For sugars, glucose revealed the highest concentration, while organic acid levels, including those for oxalic, lactic, citric and pyroglutamic acid, increased throughout the fermentation period. Twenty-one compounds were identified by gas chromatography from aroma concentrates of the lao-chao culture filtrate, prepared using the headspace method. For the flavor components, higher quantities of ethanol, fusel oil and ester were determined in both culture filtrates. In regard to the evaluation of yogurt-like product, there were significant differences in alcoholic smell, texture and curd firmness.

Analysis of the total system for production, transportation and utilization of hydrogen energy (수소 에너지 생산, 수송 및 이용에 대한 통합시스템 해석)

  • Oh, Byeong-Soo;Seo, Seog-Jin
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.9 no.1
    • /
    • pp.38-45
    • /
    • 1998
  • An energy crisis is expected in near future. Fossil fuel such as oil and natural gas has been used and will be no longer supplied enough to demand in the beginning of coming century. The use of the fuel makes a lot of environmental pollution to threaten human being's health especially in big cities and produces a lot of $CO_2$ to make green house effect of the earth. It is the time to use clean fuel such as hydrogen to prevent the expected energy crisis and the pollution. A new engine such as fuel cell can be used instead of the conventional internal combustion engine with 2 to 3 times higher efficiency of the conventional engine. The fuel cell uses hydrogen and oxygen and produces electric energy and pure water, which is a calm engine without air pollution. In big cities the city buses and the taxies powered by hydrogen fuel cells are suggested to be operated for clean environment. A model of the total energy system for production, transportation and utilization of hydrogen is calculated.

  • PDF

Effect of Formation of Segmented Fractures Induced by Fluid Injection on Major Design Parameters (수압파쇄균열의 분할생성 시 주요 설계변수에 대한 영향)

  • Sim, Young-Jong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.6
    • /
    • pp.125-133
    • /
    • 2009
  • Rock fracturing technique through fluid injection into the wellbore has been widely used to extract geothermal heat and to enhance oil and gas production. Single fracture formation is ideal for the production. However, it is very difficult to form single fracture formation. Instead, the formation of segmented fracture is a common phenomenon. Therefore, design parameters are expected to be different from those of single fracture because of mechanical interaction between segmented fractures. In this paper, design parameters such as length, aperture, and net pressure are evaluated by using model of segmented fracture in which numerical technique is incorporated to consider mechanical interaction between segments. Results show that the existence of fracture segmentation affects design parameters in fracturing treatment in rock by fluid injection.

  • PDF

A Study on the Riser Fatigue Analysis Using a Quarter-modal Spectrum (사봉형 스펙트럼을 이용한 라이저 피로해석 연구)

  • Kim, Sang Woo;Lee, Seung Jae;Choi, Sol Mi
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.6
    • /
    • pp.514-520
    • /
    • 2016
  • Oil and gas production riser systems need to be designed considering a wide band quarter-modal analysis which contains low-, wave-, VIV(Vortex induced vibration) frequencies. The VIV can be separated into cross-flow(CF) and in-line(IL) components. In this study, the various idealized tri- and quarter-modal spectra are suggested to analyze fatigue damage on the production riser system. In order to evaluate the fatigue damage increment caused by the IL's motion, tri- and quarter-modal spectral fatigue damages are calculated in time domain. And the fatigue damage calculated from two different modal spectra are compared quantitatively. Then the suitability of existent wide band fatigue damage models for quarter modal spectrum was evaluated by comparison of frequency domain calculation and time domain calculation. The result show that although spectral density of IL motion is not remarkable in quantity, the effect on the fatigue damage is significant and existent fatigue damage models are not adequately estimating damage by quarter-modal spectra.

The Study on the Development of Ozone Water Diffusion Device by Ozonated Olive Oil Mix Ratio that will Increase (올리브 오일의 오존화 혼합비율을 높여주는 오존수 확산장치개발에 관한 연구)

  • Kim, Duck-Sool
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.4
    • /
    • pp.688-693
    • /
    • 2014
  • This study is to increase the utilization of the ozonated water generator to make it easier to take advantage of the ozone water in the world today, there will be to develop a system that operates in one motion. Furthermore, olive oil and ozone is reacted with the wish to apply to the manufacturing technology. In the case of many existing products ozone generator driven mostly non-ozone system. In the case of ozone, but handwriting is implied general way pressure ozone gas leakage risks of suction force to the pump, it is the case of the challenge by using the injector, and limit the generation of ozone and ozone inhalation according to whether the water inlet leakage of existing products risk due to minimized. Despite the disadvantages of the injector system was found the effectiveness of the ozonated water production unit injector system used in this study to maintain the microbiological disinfection performance.

The Status of Production and Usage of Bio-Jet Fuel (바이오항공유 생산 및 사용현황)

  • Young-Kwan, Lim;Jin-Woo Doe
    • Applied Chemistry for Engineering
    • /
    • v.34 no.5
    • /
    • pp.472-478
    • /
    • 2023
  • The usage of jet fuel has been increasing with increasing passenger and logistics movements under globalization. CO2, which is the main global warming gas from aircraft, was charged about 3.5% of total global CO2 emissions and 12% of transportation fuel emissions. For these reasons, a lot of governments and the international civil aviation organization (ICAO) are trying to reduce CO2 emissions via the introduction of bio-jet fuel. In this paper, we showed the jet fuel properties, specifications, and presentative production methods of bio-jet fuel such as alcohol to jet (ATJ), oil to jet (OTJ), gas to jet (GTJ) and sugar to jet (STJ). Also, we described the status of global and domestic bio-jet fuel usage and the policy plan for efficient distribution.