• Title/Summary/Keyword: Oil water separation

Search Result 131, Processing Time 0.027 seconds

Preparation of Polyketone Micro/nanofiber Membrane based on Electrospinning Condition and Its Application in Oil-Water Separation (전기방사법의 제조 조건에 따른 폴리케톤 마이크로/나노섬유 분리막 제조 및 유수 분리 적용)

  • Hou, Jian;Yun, Jaehan;Park, Chanju;Choi, Jinwon;Jeon, Sungil;Lee, Chang Hyun;Byun, Hongsik
    • Membrane Journal
    • /
    • v.31 no.6
    • /
    • pp.426-433
    • /
    • 2021
  • In this study, a novel material polyketone (PK) was chosen and PK micro/nano fiber membranes were fabricated via electrospinning method under various conditions. After that, the potential application in oil-water separation was thoroughly investigated. The surface of microfiber membrane formed under high humidity especially became much rougher than that formed under low humidity. When salt was added to the spinning solution, the diameter of fibers was reduced up to 90% and the nanofiber membranes could be formed. The oil/water emulsions were prepared and separated under gravity condition using the manufactured rPK-LNC and PK-H membranes. The separation characteristics was evaluated by measuring total organic carbon (TOC) and turbidity. Meanwhile, the changes in the physical properties of fiber membranes under various conditions and with or without salt, as well as the changes in oil water separation characteristics were also studied.

Separation of Water and Oil by Poly(acrylic acid)-coated Stainless Steel Mesh Prepared by Radiation Crosslinking (방사선가교로 제조된 폴리아크릴산 코팅 스테인리스그물망에 의한 유수 분리)

  • Nho, Young-Chang;Shin, Jung-Woong;Park, Jong-Seok;Lim, Youn-Mook;Jeun, Joon-Pyo;Kang, Phil-Hyun
    • Journal of Radiation Industry
    • /
    • v.9 no.2
    • /
    • pp.77-84
    • /
    • 2015
  • The stainless steel mesh coated with poly(acrylic acid) hydrogel was fabricated and applied for the separation of water and oil. The stainless steel mesh was immersed in aqueous poly (acrylic acid) solution, and then irradiated by radiation to introduce poly(acrylic acid) hydrogel on the surface of mesh by crosslinking. It was possible to separate oil and water from mixtures of oil/water effectively using the hydrogel-coated mesh. The effect of irradiation dose, coating thickness, size of mesh on the separation efficiency was examined.

Three-Phase Eulerian Computational Fluid Dynamics (CFD) of Air-Water-Oil Separator with Coalescer (유적 합체기가 포함된 공기-물-기름 분리 공정에 대한 3상 Eulerian 전산유체역학)

  • Lim, Young-Il;Le, Thuy T.;Park, Chi-Kyun;Lee, Byung-Don;Kim, Byung-Gook;Lim, Dong-Ha
    • Korean Chemical Engineering Research
    • /
    • v.55 no.2
    • /
    • pp.201-213
    • /
    • 2017
  • Water is removed from crude oil containing water by using oil separator. This study aims to develop a three-dimensional (3D) Eulerian computational fluid dynamics (CFD) model to predict the separation efficiency of air-water-oil separator. In the incompressible, isothermal and unsteady-state CFD model, air is defined as continuous phase, and water and oil are given as dispersed phase. The momentum equation includes the drag force, lift force and resistance force of porous media. The standard k-${\varepsilon}$ model is used for turbulence flow. The exit pressures of water and oil play an important role in determining the liquid level of the oil separator. The exit pressures were identified to be 6.3 kPa and 5.1 kPa for water and oil, respectively, to keep a liquid level of 25 cm at a normal operating condition. The time evolution of volume fractions of air, water and oil was investigated. The settling velocities of water and oil along the longitudinal separator distance were analyzed, when the oil separator reached a steady-state. The oil separation efficiency obtained from the CFD model was 99.85%, which agreed well with experimental data. The relatively simple CFD model can be used for the modification of oil separator structure and finding optimal operating conditions.

A Review on Zeolite-based Ceramic Membrane for Oil/Water Separation (기름/물 분리를 위한 제올라이트 기반의 세라믹 분리막에 대한 총설)

  • Lee, Joo Yeop;Rajkumar, Patel;Kim, Jong Hak
    • Membrane Journal
    • /
    • v.32 no.2
    • /
    • pp.83-90
    • /
    • 2022
  • Wastewater from refineries and petroleum plant lead to severe environmental pollution. There are various existing processes applied for oily water treatment, but membrane-based technology is one of the most efficient methods. Polymeric membranes prepared from organic materials for the separation of oil in water often face chronic problem of membrane fouling. Inorganic membranes are considered to be more efficient due to longer lifetime than organic membranes. Zeolite membranes have better chemical stability and long-term recyclability. The presence of hydrophilicity enhances the water flux of membrane. Ceramic membranes prepared from zeolites are another efficient class of inorganic membranes applied for oil water separation. This review is focused on oily wastewater separation based on zeolite membrane which classified into two categories, i) neat zeolite and ii) zeolite composites with other materials.

Advances in Highly Selective Materials for the Separation of Oil-Water (고선택성 유수분리 소재 기술)

  • Uhm, Sunghyun;Choi, Kwang-Soon;Lee, Donghun
    • Applied Chemistry for Engineering
    • /
    • v.30 no.2
    • /
    • pp.141-144
    • /
    • 2019
  • Oil-water separators are commonly used in the oily wastewater treatment for the reuse of water resources. Recently, various approaches have been conducted to design and manipulate the oil-water separator installed with highly functionalized membranes. Membrane technologies should encompass the selectivity, durability, economics and processability of materials, and effective oil water separators be also developed to exhibit the optimal performance of the materials. In this mini-review, we highlight the large scale fabrication of membrane materials and the effective design of oil water separators.

A Study on Three-Phase Separation Efficiency according to the Diffusion Plate of a High-Speed Centrifugal Separator (고속 원심분리장치의 확산판에 따른 상 분리효율에 관한 연구)

  • Lee, Choon-Man;Jeong, Ho-In
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.10
    • /
    • pp.99-103
    • /
    • 2019
  • Recently, as the high-precision machinery industry has developed rapidly, peripheral equipment has been developed to improve machining efficiency. Peripheral equipment for machining includes cooling units, housings, oil separators, and much more. Oil, such as cleaning and cutting fluids, is used for machining. When waste oil is reused, the contamination of the workpieces and reduction in machining accuracy are generated by the waste oil, including sludge. Therefore, the development of an oil separator is necessary for efficiently separating oil, water, and sludge. The purpose of this study is to analyze the oil separation efficiency and flow characteristics of a high-speed centrifugal separator according to the rotation velocity and diffusion plate. The oil separation efficiency and flow characteristics were analyzed using hydrodynamic theory and computational fluid dynamics (CFD). The results of this study will be used as basic data for the development of a high-speed centrifugal separator.

A Study on the Separation Efficiency of In-line Type Subsea Oil-water Separator (In-line형 심해 유수분리기의 분리 효율에 관한 연구)

  • Kim, Hyun-Ji;Kim, Gwi-Nam;Kim, Young-Ju;Woo, Nam-Sub;Huh, Sun-Chul
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.3
    • /
    • pp.253-260
    • /
    • 2021
  • The implementation of subsea separation and liquid boosting is becoming a common development scheme for the exploration of deep water fields. Subsea separation is an attractive and economic solution to develop deep offshore fields producing fluid without hydrate or wax. A subsea separator can avoid or simplifying costly surface platforms of floating vessels, as well as being an efficient tool to enhance hydrocarbon production. Subsea separation system should be reliable to ensure successful operation in a wide range of 3-phase flow regime. In this study, multiphase flow characteristics inside in-line type subsea separation system are investigated for the design of subsea separation system.

Recovery of Petroleum Hydrocarbons from Oily Sludge Landfilled Soil

  • Shin, Su-Yeon;Park, Sang-Min;Ko, Sung-Hwan;Jung, Hong-Bae;Baek, Kitae
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.5
    • /
    • pp.41-46
    • /
    • 2015
  • Three types of experiments, based on the physical properties of oily sludge landfilled soil, were conducted to recover total petroleum hydrocarbons (TPH) from the soil. These experiments included gravity separation, solvent extraction using water, and air floatation. The oil portion was not easily separated from the wet (raw) soil because water molecules aggregate the soil particles, despite the fact that the soil was sandy. However, the drying and grinding processes destroyed the aggregates, causing the TPH recovery to increase to approximately 60% when air floatation was used. The drying process decreased the specific gravity of the soil sample, thereby enhancing the overall recovery of TPH from the soil. Although thermal desorption and/or incineration are common choices for heavily dumped sites, physical separation can recover the oil portion instead of simply removing it.

Resource recovery and harmless treatment of waste oil-in-water drilling fluid

  • Tang, Chao;Xie, Shui Xiang
    • Environmental Engineering Research
    • /
    • v.22 no.3
    • /
    • pp.277-280
    • /
    • 2017
  • Destablization and demulsification is a difficult task for the treatment of waste oil-in-water drilling fluid because of its "three-high" characteristics: emulsification, stabilization and oiliness. At present, China is short for effective treating technology, which restricts cleaner production in oilfield. This paper focused on technical difficulties of waste oil-in-water drilling fluid treatment in JiDong oilfield of China, adopting physical-chemical collaboration demulsification technology to deal with waste oil-in-water drilling fluid. After oil-water-solid three-phase separation, the oil recovery rate is up to 90% and the recycled oil can be reused for preparation of new drilling fluid. Meanwhile, harmless treatment of wastewater and sludge from waste oil-in-water drilling fluid after oil recycling was studied. The results showed that wastewater after treated was clean, contents of chemical oxygen demand and oil decreased from 993 mg/L and 21,800 mg/L to 89 mg/L and 3.6 mg/L respectively, which can meet the requirements of grade one of "The National Integrated Wastewater Discharge Standard" (GB8978); The pollutants in the sludge after harmless treatment are decreased below the national standard, which achieved the goal of resource recovery and harmless treatment on waste oil-in-water drilling fluid.

Emulsified Oily Wastewater Treatment by MHD Water Treatment Device (MHD 수처리방식에 의한 에멀젼오일폐수의 처리)

  • 김인수;박승조
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.17 no.4
    • /
    • pp.20-27
    • /
    • 1993
  • Emulsified oily wastewater is generally hard to treat in separating oil and water by conventional separators. In this paper the magnetohydrodynamic water treatment device was used to separate oil from emulsified oily wastewater which contained high conductivity. The emulsified oil removal rates and economic ranges of oil separation at various factors were investigated to confirm the influence of the magnetic field in MHD water treatment device according to the characteristics of emulsion brake. Experimental results proved that the oil removal rates were proportional to Lorentz force which depends on the intensity of magnetic field, conductivity and velocity of wastewater.

  • PDF