• Title/Summary/Keyword: Oil recovery efficiency

Search Result 56, Processing Time 0.021 seconds

Efficiency Study of Rose and Lavender Essential oil in the Physiologic Active Changes of Skin Treated with Surfactant (계면활성제에 의한 피부 생리적 활성 변화에 대한 Rose, Lavender essential oil의 유효성 연구)

  • Nam, Jeung-Hae;Choi, Jeung-Sook
    • Journal of the Korean Society of Fashion and Beauty
    • /
    • v.3 no.3 s.3
    • /
    • pp.48-55
    • /
    • 2005
  • The summary of a study of efficacy of Rose essential oil and Lavender essential oil against physiologic active change s of skin caused to surfactant is as follows. 1. In feed intake efficiency, there is more significant difference than control group, and then in water intake, there are significant differences between each group. It is presented that the water intake efficiency ratio of the group treated by Rose essential oil and Lavender essential oil is higher than all of groups to be participated in experiment. And then, the reason that the group treated Lavender essential oil is lower than any other group is needed water intake to be caused by stress. 2. As the result of serum analysis, in atherosclerotic index(A.I), the cholesterol of control group is higher than that of the group treated. As HDL cholesterol is activated, the dan1aged group is higher than control group, in LDL cholesterol the control group is higher. It is seen that the damaged group of the quantity of HDL cholesterol is lower frequently in A.I. This fact is presented that HDL cholesterol that cholesterol is exhausted is changed, because of the dan1aged group that replacement is activated. 3. As the observed result of alteration of sebaceous glands, it is appeared that the demage of sebaceous glands is destroyed in the damaged group. It is observed that epidermis of the group applied by Rose essential oil after treated surfactant is dry, secretion of phenomenon of water and sebum is appeared more. It is observed that the epidermis recovery of the group applied by Lavender essential oil after treated surfactant is insufficient. And then it is seen that stratum corneum is recovered and the quantity of sebum secretion is decreased. 4. As the observed result of alteration of Mast cell group treated by Rose essential oil and Lavender essential oil for 3 weeks Luna's stain(${\times}100$), it is observed that the damaged group treated by Lavender essential oil is numerous in alteration of mast cell's number and Mast cell's size is larger than the dan1aged group. It is presented that the Mast cell's number and Mast cell's size is larger than the damaged group, the Mast cell's size and quantity of the group treated by Rose essential oil and Lavender essential oil is decreased more.

  • PDF

A Preliminary Study on Direct Ethanol SOFC for Marine Applications

  • Bo Rim Ryu;To Thi Thu Ha;Hokeun Kang
    • Journal of Navigation and Port Research
    • /
    • v.48 no.2
    • /
    • pp.125-136
    • /
    • 2024
  • This research presents an innovative integrated ethanol solid oxide fuel cell (SOFC) system designed for applications in marine vessels. The system incorporates an exhaust gas heat recovery mechanism. The high-temperature exhaust gas produced by the SOFC is efficiently recovered through a sequential process involving a gas turbine (GT), a regenerative system, steam Rankine cycles, and a waste heat boiler (WHB). A comprehensive thermodynamic analysis of this integrated SOFC-GT-SRC-WHB system was performed. A simulation of this proposed system was conducted using Aspen Hysys V12.1, and a genetic algorithm was employed to optimize the system parameters. Thermodynamic equations based on the first and second laws of thermodynamics were utilized to assess the system's performance. Additionally, the exergy destruction within the crucial system components was examined. The system is projected to achieve an energy efficiency of 58.44% and an exergy efficiency of 29.43%. Notably, the integrated high-temperature exhaust gas recovery systems contribute significantly, generating 1129.1 kW, which accounts for 22.9% of the total power generated. Furthermore, the waste heat boiler was designed to produce 900.8 kg/h of superheated vapor at 170 ℃ and 405 kP a, serving various onboard ship purposes, such as heating fuel oil and accommodations for seafarers and equipment.

Microalgal Oil Recovery by Solvent Extraction from Nannochloropsis oceanica (Nannochloropsis oceanica로부터 용매추출법을 이용한 미세조류 오일 회수)

  • Park, Ji-Yeon;Lee, Gye-An;Kim, Keun-Yong;Kim, Ki-Yong;Choi, Sun-A;Jeong, Min-Ji;Oh, You-Kwan
    • Korean Chemical Engineering Research
    • /
    • v.52 no.1
    • /
    • pp.88-91
    • /
    • 2014
  • In this study, oil as a source of biodiesel from Nannochloropsis oceanica was extracted using organic solvent. The oil extraction yield and efficiency from dry and wet microalgae were investigated. The initial fatty acids content of the N. oceanica was 317.8 mg/g cell showing a high oil content over 30%. The yield from dry microalgae was higher than that from wet microalgae due to the inhibition of water. The yield by chloroform-methanol was the highest and the yield by hexane was the lowest. However, the total fatty acids contents with the chloroform-methanol were 678.7 and 778.2 mg/g oil under dry and wet conditions, respectively. The high oil extraction yield by chloroform-methanol reflected the fact that the extracted oil contained a high level of impurity. The hexane-methanol extraction from dry N. oceanica showed high oil extraction efficiency, 82.6%. The chloroform-methanol extraction under wet condition also showed high efficiency, 88.0%. While the hexane-methanol extraction from dry microalgae is desirable under low drying cost, the chloroform-methanol extraction from wet microalgae is desirable under high drying cost.

Low Temperature Pyrolysis for the Recovery of Value-added Resources from Waste Wire (II) (폐전선으로부터 유가자원 회수를 위한 저온열분해(II))

  • Han, Seong-Kuk;Kim, Jae-Yong
    • Applied Chemistry for Engineering
    • /
    • v.20 no.5
    • /
    • pp.553-556
    • /
    • 2009
  • This research aims at the recovery of valuable resource and more efficient waste treatment through solving the problem of pyrolysis technique. At first, in order to raise the economical efficiency, the low temperature pyrolysis experiment was carried out at the temperature of $450^{\circ}C$, which is lower than the common pyrolysis temperature area ($500{\sim}1000^{\circ}C$). We could lower the reaction temperature and reduce the reaction time by using catalyst. Also we used indirect heat for the purpose of maintaining favorable anoxic condition. As a result, we could raise the recovery rate of the valuable copper and synthetic fuel oil. Furthermore, the by-products and flue gas could be treated more effectively as well. The flue gas passed through two stage neutralization tank, so that dioxin hardly occurs and other environment items are controlled fairly well to the environmental standard. Throughout this study, we produced the low temperature pyrolysis equipment (GTPK-001) as mentioned above, and we found out that the technique can be commercialized economically as well as environmentally friendly.

Study of Process for Offshore LNG Production (해상에서의 LNG 생산을 위한 공정 고찰)

  • Kim, Seung-Hyuk;Ha, Mun-Keun;Kim, Byung-Woo;Sadasivam, M.;Koo, Keun-Hoe
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.119-123
    • /
    • 2002
  • Liquefied Natural Gas(LNG) continues to attract modern gas industries as well as domestic markets as their main energy source in the recent years. This is mainly because LNG is inherently cleaner and more energy efficiency than other fuels. Offshore LNG production plant is of interest to many oil producing companies all over the world. This article discuss about the production process encountered while developing such a production facility. Typical offshore oil and gas processing required for oil stabilization and other optional units that can be added to the facilities. The production process can broadly be divided into five major units namely, (i) Oil Stabilization unit, (ii) Gas Treatment unit, (iii) Methane Recovery unit, (iv) Distillation unit and (v) LNG Liquefaction unit. The process simulation was carried out for each unit with a given wellhead composition. The topside facilities of offshore LNG production plant will be very similar to the process adopted in offshore processing platform along with the typical onshore LNG production plant. However, the process design problems associated with FPSO motion to be taken care of while developing floating LNG production plant.

  • PDF

Study of spray characteristics according to the variation of swirl vane geometry for Fuel oil scrubber nozzles (연료유 스크러버 노즐의 스월베인 구조변화에 따른 분무특성의 수치해석적 연구)

  • Kim, In-Cheol;Lee, Kyung-Woo;Lee, Young-Ho
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2012.06a
    • /
    • pp.203-203
    • /
    • 2012
  • The Recovery facility, the scrubber is a collection device that injects liquid into the gas with the suspended particles using a spray nozzle. The liquid used is generally water. For the development of the design technology of a high efficiency scrubber, the spray characteristics according to the variation of the scrubber nozzle swirl vane was studied.

  • PDF

Design of a Scroll Expander for Waste Heat Recovery from Engine Coolant (엔진 냉각수 폐열 회수용 스크롤 팽창기 설계)

  • Yu, Je-Seung;Kim, Hyun-Jae;Kim, Hyun-Jin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.12
    • /
    • pp.815-820
    • /
    • 2011
  • A scroll expander was designed for an energy converter from waste heat of IC engine coolant to useful shaft work. The scroll expander is to run in a Rankine cycle which receives heat energy transferred from engine coolant circulation cycle. The working fluid was Ethanol. For axial compliance, a back pressure chamber was provided on the rear side of the orbiting scroll. Lubrication oil was delivered by a positive displacement type oil pump driven by the shaft rotation. Performance analysis on the scroll expander showed that the expander efficiency was 63.4%. It extracts shaft power of 0.6 kW out of engine coolant waste heat of 17.5 kW, resulting in the Rankine cycle efficiency of 3.43%.

Net Analyte Signal-based Quantitative Determination of Fusel Oil in Korean Alcoholic Beverage Using FT-NIR Spectroscopy

  • Lohumi, Santosh;Kandpal, Lalit Mohan;Seo, Young Wook;Cho, Byoung Kwan
    • Journal of Biosystems Engineering
    • /
    • v.41 no.3
    • /
    • pp.208-220
    • /
    • 2016
  • Purpose: Fusel oil is a potent volatile aroma compound found in many alcoholic beverages. At low concentrations, it makes an essential contribution to the flavor and aroma of fermented alcoholic beverages, while at high concentrations, it induced an off-flavor and is thought to cause undesirable side effects. In this work, we introduce Fourier transform near-infrared (FT-NIR) spectroscopy as a rapid and nondestructive technique for the quantitative determination of fusel oil in the Korean alcoholic beverage "soju". Methods: FT-NIR transmittance spectra in the 1000-2500 nm region were collected for 120 soju samples with fusel oil concentrations ranging from 0 to 1400 ppm. The calibration and validation data sets were designed using data from 75 and 45 samples, respectively. The net analyte signal (NAS) was used as a preprocessing method before the application of the partial least-square regression (PLSR) and principal component regression (PCR) methods for predicting fusel oil concentration. A novel variable selection method was adopted to determine the most informative spectral variables to minimize the effect of nonmodeled interferences. Finally, the efficiency of the developed technique was evaluated with two different validation sets. Results: The results revealed that the NAS-PLSR model with selected variables ($R^2_{\upsilon}=0.95$, RMSEV = 100ppm) did not outperform the NAS-PCR model (($R^2_{\upsilon}=0.97$, RMSEV = 7 8.9ppm). In addition, the NAS-PCR shows a better recovery for validation set 2 and a lower relative error for validation set 3 than the NAS-PLSR model. Conclusion: The experimental results indicate that the proposed technique could be an alternative to conventional methods for the quantitative determination of fusel oil in alcoholic beverages and has the potential for use in in-line process control.

Peroxopolyoxotungsten-based Ionic Hybrid as a Highly Efficient Recyclable Catalyst for Epoxidation of Vegetable oil with H2O2

  • Wu, Jianghao;Jiang, Pingping;Qin, Xiaojie;Ye, Yuanyuan;Leng, Yan
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.6
    • /
    • pp.1675-1680
    • /
    • 2014
  • A peroxopolyoxotungsten-based ionic hybrid was synthesized by anion-change of peroxopolyoxometalate (POM) $PW_4O{_{24}}^{3-}$ with dicationic long-chain alkyl imidazolium ionic liquids. The characterization was conducted by FT-IR, TGA, $^1H$-NMR and CHN Elemental analyses. Its catalytic performance was evaluated by the epoxidation of soybean oil with $H_2O_2$ under solvent-free condition, including testing of organic cations influence, catalytic reusability and reaction conditions. The catalyst was proved to be a highly efficient recyclable catalyst for epoxidation of various vegetable oils with $H_2O_2$, showing high $H_2O_2$ utilization efficiency, high catalytic activity, convenient recovery and good reuse ability.

Desorption Characteristics of Grinding Oil from Swarf by using Supercritical Carbon Dioxide (초임계 이산화탄소를 이용한 스와프로부터 연마유 탈착 특성)

  • Yang, Jun Youl;Lee, Youn-Woo;Lim, Jong Sung
    • Clean Technology
    • /
    • v.10 no.3
    • /
    • pp.139-148
    • /
    • 2004
  • The recovery of stainless steel fiber by removing cutting oil from grinding swarf, which is classified as specified wastes, was investigated. Swarf loaded with grinding oil was regenerated by supercritical carbon dioxide. And, the effects of temperature(313.15K-323.15K), pressure(10MPa-30MPa) on regeneration efficiency were studied. Regeneration effiency was increased as the pressure was increased. Also, at the same pressure, the experiments at higher temperature were more efficient for regeneration. The experiment results was predicted by applying a one-parameter mathematical model assuming linear desorption kinetics. The predicted value showed good agreement with experimental data.

  • PDF