• Title/Summary/Keyword: Oil quenching

Search Result 46, Processing Time 0.027 seconds

Development of Heat Transfer Predicting Model for Cold forging Steel(SCr420) During Quenching Process (냉간 단조용 SCr420 강의 퀜칭 시 열전달 예측모델 개발)

  • 진민호;장지웅;강성수
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.68-71
    • /
    • 2003
  • Heat treatment is one of the critical manufacturing processes that determine the quality of a product. This paper presents experimental and analytical results for the quench of a ring gear in stagnant oil. The goal of this study is to develop heat transfer predicting model in an overall analysis of the quenching process. Thermal conductivities which are dependant on temperatures and convection coefficients which are obtained by inverse method are used to develop the accurate heat transfer model. The results of heat transfer model have a good agreement with experimental results.

  • PDF

Development of Heat Transfer Predicting Model for Cold forging Steel(SCM420) During Quenching Process (냉간 단조용 SCM420 강의 ?칭 시 열전달 예측모델 개발)

  • 진민호;장지웅;김정민;강성수
    • Transactions of Materials Processing
    • /
    • v.13 no.5
    • /
    • pp.441-448
    • /
    • 2004
  • Heat treatment is one of the critical manufacturing processes that determine the quality of a product. This paper presents experimental and analytical results for the quench of a ring gear in stagnant oil. The goal of this study is to develop heat transfer predicting model in an overall analysis of the quenching process, Thermal conductivities which are dependant on temperatures and convection coefficients which are obtained by inverse method are used to develop the accurate heat transfer model. The results of heat transfer model have a good agreement with experimental results.

Effect of Quenching Heat-treatment on Mechanical Properties and Microstructure of Modified C95600 Bronze (개량형 C95600 청동의 기계적 성질과 미세조직에 미치는 퀜칭 열처리의 영향)

  • Lee, Sung-Yul;Moon, Kyung-Man;Oh, Jae-Hwan;Shin, Dong-Il
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.6
    • /
    • pp.97-104
    • /
    • 2011
  • Modified C95600 bronze contains Fe component of 0.7 weight percentage besides Cu-7Al-2.5Si composition. The shape of centrifugal cast is a circular pipe with thick wall. Specimens machined from the centrifugal cast were quenched in oil after isothermal holding at a given heat treatment temperature in the range of $700{\sim}900^{\circ}C$. Mechanical properties and structural morphology are depended on the quenching heat treatment temperature regardless of isothermal holding time. Tensile strength or Brinell hardness is increased with increasing heat treatment temperature. The microstructure caused by quenching contains mixing phases of ${\alpha}+{\beta}'+FeSi+{\kappa}$ which martensite of ${\beta}'$ phase has been transformed from ${\beta}$ phase. Effect of isothermal holding temperature on mechanical properties in case of quenching heat treatment attributes to the change of volume fraction of ${\beta}'$ on the structural morphology. Mechanical characteristics of specimen, initially quenched from $850^{\circ}C$, and then tempered at $500^{\circ}C$, does not show an obvious softening indication, because disappearance of ${\beta}'$ during tempering process can be compensated by precipitation of brittle phase ${\gamma}$.

Effect of Heat Treatments on the Microstructures and Mechanical Properties of OCTG (유정용 강관의 미세조직 및 기계적 성질에 미치는 열처리의 영향)

  • Choi, Jong-Min;Noh, Sang-Woo;Yi, Won-Jae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.5
    • /
    • pp.252-261
    • /
    • 2017
  • This study examined the effect of heat treatment on the microstructure and mechanical properties of J55 line pipe steel. The experiments were carried out at under the following various conditions: austenization temperature($880^{\circ}C$, $910^{\circ}C$, $940^{\circ}C$), cooling methods(water quenching, oil quenching) and tempering temperature(none, $550^{\circ}C$, $650^{\circ}C$). The phase diagram and CCT curve were simulated based on the chemical composition of J55 steel to predict the microstructures. In the results, A1, A3 temperature decreased. As the austenization temperature increased, existing austenite grains grew exponentially which seriously degraded their mechanical properties. Various microstructures, including martensite, bainite, ferrite, and pearlite, developed in accordance with the heat treatments and were closely correlated with hardness, tensile strength and toughness. Martensite was formed after water quenching, but bainite and ferrite appeared after oil quenching. FeC precipitation formed and coarsened during tempering, which improved their toughness.

Effect of Sintering Temperature, Heat Treatment and Tempering on Hardness of SH737-2Cu-0.9C Sintered Samples

  • Anand, S.;Verma, N.;Upadhyaya, A.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.555-556
    • /
    • 2006
  • The study examines hardness pattern of SH737-2Cu-.9C samples transient liquid phase sintered at different temperatures viz. $1120^{\circ}C$, $1180^{\circ}C$ and $1250^{\circ}C$, heat treated by various methods and then tempered at different temperatures. Sintered samples were characterized for density and densification parameter, and austenitized at $900^{\circ}C$, subsequently cooled by four different methods viz. annealing, normalizing, oil and brine quenching. Hardness pattern was found minimum for air cooled and maximum for brine quenched, and samples sintered at $1250^{\circ}C$ had relatively higher hardness. The O.Q and B.Q samples were then tempered at $200^{\circ}C$, $400^{\circ}C$, $600^{\circ}C$ and $700^{\circ}C$. Hardness pattern typically showed secondary hardness taking place, with maximum around $600^{\circ}C$.

  • PDF

A study on the Fracture of Coil Spring (파쇄기용 코일스프링의 파손에 관한 연구)

  • Jeong, Hyung-Sik;An, Se-Won;Lee, Jong-Hyung;Choi, Seong-Dae
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.9 no.1
    • /
    • pp.51-59
    • /
    • 2006
  • The study is diagnosis about fatigue failure phenomenon of heating coil spring (sup9) and heat treatment method that is used to crusher. Because more than 80~90% of damage announcement of breakdown of machine and construction is been caused in fatigue present state, fatigue failure became important leading person at design. Calculated design load is imposed repeatedly that fatigue breakdown is safe. Is phenomenon that change load is imposed in the construction continuously. Used coil spring applies heat 30minute by Quenching temperature $860^{\circ}C$ if see manufacturing process and temperature of gasoline of $50^{\circ}C$ keep after quench that know tempering a $460^{\circ}C$ 90minute a product be. If doto apply heat $950^{\circ}C$ material at rolling process historically before quenching, austenite formation clay pipe being done AGS(Austenite Grain Size) by 2.5~4 become. Apply heat quenching 30minute by $820^{\circ}C$ by improvement method and after quench that keep $50^{\circ}C$ in oil tempering if do $450^{\circ}C$, 90minute spring ideal formation sorbite formation of the river form and condition that satisfy most more than AGS 7 appeared. Also, we can secure authoritativeness through MT since shot peening processing.

  • PDF

Effects of Stability and Volume Fraction of Retained Austenite on the Tensile Properties for Q&P and AM Steels (Q&P와 AM강의 잔류오스테나이트 분율과 안정도에 따른 인장특성 거동)

  • Byun, Sang-Ho;Oh, Chang-Suk;Nam, Dae-Geun;Kim, Young-Seok;Kang, Nam-Hyun;Cho, Kyung-Mox
    • Korean Journal of Materials Research
    • /
    • v.19 no.6
    • /
    • pp.305-312
    • /
    • 2009
  • The effects of Quenching and Partitioning (Q&P) and Annealed Martensite (AM) heat treatment on the microstructure and tensile properties were investigated for 0.24C-0.5Si-1.5Mn-1Al steels. The Q&P steels were annealed at a single phase ($\gamma$) or a dual phase (${\gamma}+{\alpha}$), followed by quenching to a temperature between $M_s$ and $M_f$. Then, enriching carbon was conducted to stabilize the austenite through the partitioning, followed by water quenching. The AM steels were intercritically annealed at a dual phase (${\gamma}+{\alpha}$) temperature and austempered at $M_s$ and $M_s{\pm}50^{\circ}C$, followed by cooling in oil quenching. The dual phase Q&P steels showed lower tensile strength and yieldyield strength than those of the single phase Q&P steels, and tThe elongation for the dual phase Q&P steel was partitioning 100s higher than that of that for the single phase Q&P steels as the partitioning time was less than 100s up to partitioning 100s. For AM steels, the tensile/yield strength decreased and the total elongation increased as the austempering temperature increased. The stability of the retained austenite controlled the elongation for Q&P steels and the volume fraction of the retained austenite controlled the elongation for AM steels.

Influence of Heat Treatment on Magnetic Chracteristics of the Magnetic (열처리방법이 철의 자기특성에 미치는 영향 1)

  • Kyung Hyon Tchah
    • 전기의세계
    • /
    • v.20 no.2
    • /
    • pp.15-18
    • /
    • 1971
  • Magnetic materials in relay have been found to change in their magnetic characteristics with heat treatment. This paper describes how the magnetic characteristics of Magnetic Iron are affected by heat treatment. The materials are pot annealed and cooled from high temperature in the pot, by exposing in the atmospheres, and by quenching in the water and oil. It also studies the best heating temperature and cooling method which improve the magnetic characteristics of the Magnetic Iron.

  • PDF

Research Trend of Bio-oil Production from Biomass by using Fast Pyrolysis (바이오매스로부터 급속 열분해를 통한 바이오오일의 생산기술 연구동향)

  • Kim, Jae-Kon;Park, Jo Yong;Yim, Eui Soon;Ha, Jong Han
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.3
    • /
    • pp.453-465
    • /
    • 2014
  • The paper provides a review on bio-oil production technology from biomass by using fast pyrolysis to use heating fuel, power fuel and transport fuel. One of the most promising methods for a small scale conversion of biomass into liquid fuels is fast pyrolysis. In fast pyrolysis, bio-oil is produced by rapidly heating biomass to intermediate temperature ($450{\sim}600^{\circ}C$) in the absence of any external oxygen followed by rapid quenching of the resulting vapor. Bio-oil can be produced in weight yield maximum 75 wt% of the original dry biomass and bio-oils typically contain 60-75% of the initial energy of the biomass. In this study, it is described focusing on the characterization of feedstock, production principle of bio-oil, bio-oil's property and it's application sector.

Effects of Carburizing Process on Sliding wear Behavior of Carburized SCM420H Steel (침탄처리한 SCM420H의 미끄럼 마모 특성에 미치는 침탄 조건의 영향)

  • Lee, Han-Young;Lee, Kyu-Hyun
    • Tribology and Lubricants
    • /
    • v.36 no.1
    • /
    • pp.18-26
    • /
    • 2020
  • The effects of the carburizing process on the sliding wear behavior of SCM420H steel have been investigated. In particular, the effects of grain boundary corrosion observed in the surface layer after gas carburizing and the effects of hardness of the carburized cases after heat-treatment on the sliding wear properties were examined. Pin specimens carburized by two methods (gas carburizing and vacuum carburizing) were tempered at two temperatures of 180℃ and 400℃ after oil-quenching, respectively. Sliding wear tests were carried out against heattreated SKH51 steel at several sliding speeds using a pin-on-disc type test machine. As results, it can be found that there is no difference in the wear behavior between the pins carburized using two methods. This implies that the grain boundary corrosion that formed in the surface layer after gas carburizing has no effect on the sliding wear behavior of carburized SCM420H steels. Additionally, there is no significant difference in the wear behavior between carburized pins tempered at 400℃ and at 180℃ after oil-quenching, regardless of the carburizing method. This is because carburized pins tempered at 400℃ have a troostite structure, which exhibits higher tribochemical reactivity even though its hardness is lower than that of martensite structure. In this respect, it can be considered that good wear resistance of carburized cases is maintained at least until the effective case depth.