• 제목/요약/키워드: Oil purification

검색결과 100건 처리시간 0.026초

저콜레스테롤 계란제품의 생산기술과 부산물의 재활용 (Production Technology of Low-cholesterol Egg Prodecuts and Recycling of By-Products)

  • 유익종
    • 한국가금학회:학술대회논문집
    • /
    • 한국가금학회 2000년도 춘계 산학협동 심포지움 Proceedings
    • /
    • pp.23-36
    • /
    • 2000
  • Hurdle technique was used to remove cholesterol efficiently from liquid egg yolk. The quality of the low cholesterol egg products from the process were evaluated. From the 75 % cholesterol reduced egg yolk through $\beta$-cyclodextrin treatment. 2 times weight of soy bean oil was added to the egg yolk and homogenized followed by centrifuged to be maximized to remove cholesterol. When the pH of the yolk was adjusted to 9, 92 % of cholesterol was removed while 95.4 % of cholesterol was removed when 3 times weight of soy bean oil was added to the egg yolk. As the results of application of supercritical carbon dioxide extraction to the 75 % cholesterol reduced egg yolk through ${\beta}$-cyclodextrin treatment, 92.5 % of the cholesterol was removed from the egg yolk at $35^{\circ}C$, 4,500 psi, for 4 hours under co-solvent. The quality characteristics of the produced low cholesterol egg products were analysed. The cholesterol reduced egg yolk produced from ${\beta}$-cyclodextrin and soy bean oil treatment showed the lower emulsion capacity compared with control. The fatty acid composition of the cholesterol reduced egg yolk produced from ${\bet}a$-cyclodextrin and soy bean oil treatment showed increased C18:2 and C18:3 compared with control while decreased C16:1 and C18: 1 compared with control. The saponification method with extracting solvent of hexane showed that cholesterol concentration was 28.1 %. The quantity of hydrolysis solution(95 % ethanol : 33 % KOH = 94 : 6) was varied from 40 to 80 times of sample weights and the cholesterol concentration of 35.7 % was the highest result in the 60 times(v/w) hydrolysis solution. Cholesterol concentration of 35.7 % was recovered at the first trial with saponification method. but it could be improved up to 95.7 % after 4 times repetitive purification.

  • PDF

Characterization of a Blend-Biosurfactant of Glycolipid and Lipopeptide Produced by Bacillus subtilis TU2 Isolated from Underground Oil-Extraction Wastewater

  • Cheng, Fangyu;Tang, Cheng;Yang, Huan;Yu, Huimin;Chen, Yu;Shen, Zhongyao
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권3호
    • /
    • pp.390-396
    • /
    • 2013
  • Biosurfactants have versatile properties and potential industrial applications. A new producer, B. subtilis TU2, was isolated from the underground oil-extraction wastewater of Shengli Oilfield, China. Preliminary flask culture showed that the titer of biosurfactant obtained from the broth of TU2 was ~1.5 g/l at 48 h (718 mg/l after purification), with a reduced surface tension of 32.5 mN/m. The critical micelle concentration was measured as 50 mg/l and the surface tension maintained stability in solution with 50 g/l NaCl and 16 g/l $CaCl_2$ after 5 days of incubation at $70^{\circ}C$. FT-IR spectra exhibited the structure information of both glycolipid and lipopeptide. MALDI-TOF-MS analyses confirmed that the biosurfactant produced by B. subtilis TU2 was a blend of glycolipid and lipopeptide, including rhamnolipid, surfactin, and fengycin. The blended biosurfactant showed 86% of oil-washing efficiency and fine emulsification activity on crude oil, suggesting its potential application in enhanced oil recovery.

접촉분해경유에 함유된 2,6-dimethylnaphthalene의 분리, 정제(II) - Dimethylnaphthalene 이성체 성분간 분리 - (Separation and Purification of 2,6-dimethylnaphthalene in the Light Cycle Oil(II) - Separation of Individual Isomers of Dimethylnaphthalene -)

  • 김수진;김상채;카와사키 준지로
    • 공업화학
    • /
    • 제7권5호
    • /
    • pp.869-876
    • /
    • 1996
  • 접촉분해경유(LCO)중에 함유된 2,6-dimethylnaphthalene(2,6-DMNA)의 분리, 정제를 위한 후처리조작으로서 고농도의 dimethylnaphthalene(DMNA) 이성체 혼합물을 함유한 유출액으로부터 2,6-DMNA의 정제를 정석-재결정의 조합에 의해 검토했다. 유출액의 정석에 의해 회수된 결정중에는 2,6-DMNA, 2,7-dimethylnaphthalene(2,7-DMNA)과 2,3-dimethylnaphthalene(2,3-DMNA)이 농축되어, 이들 3 이성체와 그 외의 DMNA 이성체간 분리는 가능하였으나, 2,6-, 2,7-과 2,3-DMNA 이성체간의 분리는 곤란했다. 2,6-DMNA의 정제에 적합한 용매의 선정을 위해, 재결정 용매로 Hexane, iso-propyl ether, ethyl acetate와 ethanol을 사용하여 2,6-과 2,7-DMNA의 용해도를 측정한 결과, 2,6-DMNA의 정제에는 ethanol이 가장 적합한 용매이었다. 또, 원료로 정석에서 회수된 결정을, 용매로 ethanol을 사용하여 재결정을 행해 2,6-DMNA의 정제에 대한 조작인자의 영향을 검토한 결과, 재결정 온도의 상승 및 용매/원료 질량비가 증가함에 따라서 2,6-DMNA의 정제는 용이했다. 본 연구에서 채용한 정석-재결정법은 DMNA 이성체 성분간 분리에 대한 유효한 분리조합의 하나임이 입증되었다.

  • PDF

유독해수(油獨海水)의 조정(調整)과 성장(性狀)에 관한 연구(硏究) (Conditioning and Characteristics of the Sea Water containing Heavy Oil)

  • 조봉연;황용우;김종국
    • 상하수도학회지
    • /
    • 제12권2호
    • /
    • pp.31-41
    • /
    • 1998
  • As the leakage of crude oil from tankers breaks out frequently, it caused a serious problem for ocean pollution and calls for developing treatments to handle the leaked crude oil and mitigate the pollution. Thus it is required to develop new purification technolgies and appropriate treatment systems which have sufficient treatment capability in order to cope with the anticipated ocean pollution. In this experiment, A and B type heavy oils were used to make the emulsion of both water containing heavy oil and sea-water containing heavy oil. The following are the main results from this study ; 1. When A and B type heavy oils were added to the original sea-water and treatedin the homogrenizer respectively, the particle of oil beacame smaller in both cases. Under the same condition, while the initial oil density of sea-water containing B-heavy oil is higher than of emulsion with A-heavy oil, the particle of A-heavy oil is finer than that of B-heavy oil. 2. When A and B type heavy oils were added to distilled water and treated in the homogenizer respectively, the particle was more dispersed and finer than that in the case of sea-water in both cases. In this result, the water containing oil formed more stable emulsion than the sea-water containing oil. 3. In this experiment, all emulsions showed oil in water types. 4. Since the oil particle is larger in the sea-water than in the distillated water, interms of elimination of oil, it is thought to be more important to give Membrane treatment after implementing sandfilter, activity carbon, coagulation-sedimentation and floating separation as pre-treatment.

  • PDF

원유로 오염된 갯벌 지역의 자연정화 기능 향상 기술의 개발 (Enhanced Natural Purification of Crude Oil Contaminated Tidal Flat)

  • 김영아;성기준
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제16권5호
    • /
    • pp.24-30
    • /
    • 2011
  • Tidal flats which are ecologically sensitive, are hard to remediate once they are contaminated by oil spill accidents. Traditional oil remediation measures focus on removal efficiency, and their improper implementation can adversely affect crude oil contaminated coastal areas and greatly disrupt the structure and functions of crude oil contaminated tidal flats. In this study, the oil degradation due to the implementation of remediation measures naturally enhanced using air and natural oil sorbents was evaluated in the lower strata of tidal flats. The effects of air and natural oil sorbents on oil degradation for two concentration levels (< 500 ppm and > 500 ppm) were tested at artificially contaminated tidal flats. Fifty days after these treatments, the natural oil sorbent treatment showed the lowest total petroleum hydrocarbon (TPH) concentration ($4.46{\pm}1.47%$) at the low concentration level, whereas both air and natural oil sorbent treatments showed high degradation efficiencies at the high concentration level ($29.30{\pm}4.39%$). Although the phosphatase activity decreased for all treatments, there was no significant difference between the decreases for the different treatments; on the other hand, B-glucosidase activities were high for both air and natural oil sorbent treatments. Although degradation efficiencies decreased as the concentration increased, the air provision and natural oil sorbent treatment could be an effective ecological restoration measure for oil contaminated tidal flats while minimizing the environmental impact of the remediation efforts.

Effect of cyclodextrin glucanotransferase enzyme in biodegradation of diesel oil

  • Sivaraman, C.;Ganguly, Anasuya;Mutnuri, Srikanth
    • Advances in environmental research
    • /
    • 제1권2호
    • /
    • pp.97-108
    • /
    • 2012
  • Microbial degradation of hydrocarbons is found to be an attractive process for remediation of contaminated habitats. However the poor bioavailability of hydrocarbons results in low biodegradation rates. Cyclodextrins are known to increase the bioavailability of variety of hydrophobic compounds. In the present work we purified the Cyclodextrin Glucanotransferase (CGTase) enzyme which is responsible for converting starch into cyclodextrins and studied its role on biodegradation of diesel oil contaminated soil. Purification of CGTase from Enterobacter cloacae was done which resulted in 6 fold increase in enzyme activity. The enzyme showed maximum activity at pH 7, temperature $60^{\circ}C$ with a molecular weight of 66 kDa. Addition of purified CGTase to the treatment setup with Pseudomonas mendocina showed enhanced biodegradation of diesel oil ($57{\pm}1.37%$) which was similar to the treatment setup when added with Pseudomonas mendocina and Enterobacter cloacae ($52.7{\pm}6.51%$). The residual diesel oil found in treatment setup added with Pseudomonas mendocina at end of the study was found to be $73{\pm}0.21%$. Immobilization of Pseudomonas mendocina on alginate containing starch also led to enhanced biodegradation of hydrocarbons in diesel oil at 336 hours.

은 이온 크로마토그래피에 의한 오징어유로부터 eicosapentaenoic acid(EPA) 및 docosahexaenoic acid(DHA)의 분리농축 (Purification of Eicosapentaenoic Acid (EPA) and Docosahexaenoic Acid (DHA) Esters from Squid Oil by Silver Ion Chromatography)

  • 경영수;우영련;윤정로
    • 한국식품과학회지
    • /
    • 제36권2호
    • /
    • pp.361-364
    • /
    • 2004
  • 은 이온이 불포화 지방산과의 착화합물을 만든다는 이론에 근거하여 은 이온 교환수지(SER)를 제조하였다. 제조한 SER을 비롯하여 silica gel, 질산은 함침 silica gel, 은 이온 제올라이트를 column 충전물로 사용하여 EPA와 DHA를 분리 농축하고 그 결과를 비교 분석하였다. SER과 silica gel의 9 : 1(w/w)혼합물을 충전물로 사용하였을 때 결과가 가장 좋았으며 이 경우 EPA와 DHA는 각각 27.9%와 49.1%로 농축되었고 수율은 각각 86.0%, 87.3%로 나타났다. SER만을 사용한 경우 EPA와 DHA는 각각 23.5%와 42.1%로 농축되었으며 이는 SER과 silica gel의 혼합 충전물 사용 시 보다 다소 낮은 결과이었다. 질산은 함침 silica gel의 경우 다른 충전물과 비교하여 농축율과 수율이 그다지 좋지 않았으나 EPA와 DHA의 분리 측면에서는 가장 우수한 결과를 나타내었다. SER은 재사용이 가능하고, 사용한 은 이온수지 자체도 쉽게 재생할 수 있을 뿐 아니라 사용한 은 이온도 AgCl 침전이나 $AgNO_3$로 회수가 용이하다는 점에서 다른 농축과정과 비교하여 훨씬 경제적이라 할 수 있다.

질화알루미늄 나노분말의 자가 접착과 미세구조화 특성을 활용한 고효율 유수분리 소재 개발 (Development of Highly Efficient Oil-Water Separation Materials Utilizing the Self-Bonding and Microstructuring Characteristics of Aluminum Nitride Nanopowders)

  • 최헌주;조한동
    • 한국산업융합학회 논문집
    • /
    • 제27권3호
    • /
    • pp.601-607
    • /
    • 2024
  • The discharge of oily wastewater into water bodies and soil poses a serious hazard to the environment and public health. Various conventional techniques have been employed to treat oil-water mixtures and emulsions; Unfortunately, these approaches are frequently expensive, time-consuming, and unsatisfactory outcomes. Porous materials and adsorbents are commonly used for purification, but their use is limited by low separation efficiencies and the risk of secondary contamination. Recent advancements in nanotechnology have driven the development of innovative materials and technologies for oil-contaminated wastewater treatment. Nanomaterials can offer enhanced oil-water separation properties due to their high surface area and tunable surface chemistry. The fabrication of nanofiber membranes with precise pore sizes and surface properties can further improve separation efficiency. Notably, novel technologies have emerged utilizing nanomaterials with special surface wetting properties, such as superhydrophobicity, to selectively separate oil from oil-water mixtures or emulsions. These special wetting surfaces are promising for high-efficiency oil separation in emulsions and allow the use of materials with relatively large pores, enhancing throughput and separation efficiency. In this study, we introduce a facile and scalable method for fabrication of superhydrophobic-superoleophilic felt fabrics for oil/water mixture and emulsion separation. AlN nanopowders are hydrolyzed to create the desired microstructures, which firmly adhere to the fabric surface without the need for a binder resin, enabling specialized wetting properties. This approach is applicable regardless of the material's size and shape, enabling efficient separation of oil and water from oil-water mixtures and emulsions. The oil-water separation materials proposed in this study exhibit low cost, high scalability, and efficiency, demonstrating their potential for broad industrial applications.

해양으로부터 분리한 Pseudomonas sp. CHCS-2가 생산하는 Biosurfactant의 정제 및 특성에 관한 연구 (Purification and Characterizationn of Biosurfactant from Marine Pseudomonas sp. CHCS-2)

  • 류병호;김학주
    • KSBB Journal
    • /
    • 제10권5호
    • /
    • pp.582-588
    • /
    • 1995
  • 해양의 유류유출이 잦은 지역으로부터 crude oil 분해능이 뛰어난 미생물을 분리하여 통정한 결과 Pseudomoans 속으로 판명되였으며, 이를 Pseud$\sigma$ moans sp. CHCS-2로 명 명하였다. 이 균주가 배양 중에 생산하는 biosurf actant의 생생 최적 pH 및 NaCI 농도는 각각 8.0 및 3.0% 였으며, 질소원인 peptone에 영향을 받았다. 2% Kuwait crude oil이 첨가된 배양액을 48, 96, 132시간별로 gas chroma­t tography를 이용, 잔류 oil을 분석한 결과 Kuwait crude oil의 C10-CI4부위에 biosurf actant가 작용하여 분해하였으며, 배양 상층액으로부터 Amberlite XAD-7을 이용한 흡착 chromatography와 Sepha­d dex G-100을 이용한 gel chromatography, 그리고 HPLC를 이용하여 biosurf actant를 분리. 정제한 결과 유화력이 뛰어난 단일 peak를 얻었다. Bio-sur­f f actant 유화력은 $40^{\circ}C$에서 가장 좋았으며, 안정성 은 $30^{\circ}C$에서 $60^{\circ}C$까지의 넓은 온도 범위에서 유지 되었다. 또한, 정제된 biosurf actant를 이용하여 계 연장력에 미치는 영향을 검토한 결과, 상엽적으로 널리 판매되고 있는 Tween 80, Tween 60 그리고 SDS보다 표연장력 저하능력이 뛰어난 것으로 밝혀졌다.

  • PDF

Development of a Novel Process to produce Biodiesel and its use as fuel in CI Engine performance study

  • Mishra, Prasheet;Lakshmi, D.V.N.;Sahu, D.K.;Das, Ratnakar
    • International journal of advanced smart convergence
    • /
    • 제4권1호
    • /
    • pp.154-161
    • /
    • 2015
  • A novel process has successfully been developed by overcoming major difficulties through the elimination of number of process steps involved in the Classical Transesterification reaction during the preparation of Fatty Acid Methyl/Ethyl Ester (FAME.FAEE) called biodiesel. The Classical process with cost intensive process steps such as the utilization of excess alcohol, needing downstream distillation for the recovery and reutilization of excess alcohol/cosolvent, unrecoverable homogenous catalyst which consumes vast quantity of fresh distilled water during the purification of the product and downstream waste water treatment before its safe disposal to the surface water body. The Novel Process FAME/FAEE is produced from any vegetable oil irrespective of edible or inedible variety using sonication energy. The novelty of the finding is the use of only theoretical quantity of alcohol along with a co-solvent and reduced quantity of homogeneous catalyst. Under this condition neither the homogeneous catalyst goes to the FAME layer nor is the distillation needed. The same ester also has been prepared in high pressure high temperature reactor without using catalyst at sub critical temperature. The quality of prepared biodiesel without involving any purification step meets the ASTM standards. Blended Biodiesel with Common Diesel Fuel (CDF) and FAME is prepared, characterized and used as fuel in the Kirloskar make CI Engines. The evaluation of the engine performance result of pure CDF, B05 biodiesel, B10 biodiesel of all types of biodiesel prepared by using the feedstock of Soybean (Glycine max) and Karanja (Pongamia pinnate) oil along with their mixed oil provides useful information such as brake power, brake thermal efficiency, brake specific fuel consumption, etc, and established it as ideal fuel for unmodified CI engine.