• Title/Summary/Keyword: Oil mill effluents (OME)

Search Result 1, Processing Time 0.015 seconds

Isolation and Identification of Lipolytic Enzyme Producing Pseudomonas sp. OME and Optimization of Cultural Conditions (지방분해효소 생산균 Pseudomonas sp. OME 의 분리 동정 및 배양조건 최적화)

  • Kumar, G.Satheesh;Reddy, T. Kiran;Madhavi, B.;Teja, P.Charan;Chandra, M.Subhosh;Choi, Yong-Lark
    • Journal of Life Science
    • /
    • v.20 no.5
    • /
    • pp.662-669
    • /
    • 2010
  • Lipolytic enzyme-producing bacteria were isolated from edible oil mill effluents on tributyrin agar medium. The shake-flask-scale studies yielded a promising isolate and it was identified as Pseudomonas sp. An OME using various microbiological observations such as cultural, microscopic, and biochemical tests was undertaken and confirmed using PIBWIN bacterial identification software. Lipolytic enzyme production was screened with oils such as sunflower, caster, coconut, tributyrin, and olive. Amongst these, olive oil showed an increased lipase production 6.1 U/ml. In view of the highest lipolytic enzyme production with olive oil, further optimizations were carried out using olive oil as a carbon source. Lipolytic enzyme production was optimized by a conventional 'one variable at a time' approach and the significant factors were further analyzed statistically using response surface methodology (RSM). The effect of physical factors such as incubation time, temperature, initial medium pH, and nutritional factors such as concentration of olive oil and yeast extract were examined for lipase production. Lipolytic enzyme secretion was strongly affected by three variables (incubation time, concentration of yeast extract and olive oil). Therefore, the interaction of these three factors was further optimized using response surface methodology. The optimized conditions of lipase production using response surface methodology yielded a maximum of 9.62 U/ml with optimum conditions for incubation, yeast extract and olive oil concentrations were found to be 48 hr, 0.3 g. and 0.9 ml. respectively.