• Title/Summary/Keyword: Oil flow

Search Result 1,074, Processing Time 0.027 seconds

A Study on the Collecting Efficiency of Oil-mist Filter according to the Sub-filter Shape (서브필터 형상에 따른 Oil-mist Filter의 포집효율 향상에 관한 연구)

  • Kim, Yong Sun;Yun, Seong Min;Shin, Hee Jae;Ko, Sang Cheol
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.1
    • /
    • pp.16-23
    • /
    • 2019
  • Cooking oil in kitchen-fog is the most harmful factor to the health of a cook. The proposed filter is a tool that protects the cooked state, to prevent users from inhaling oil mist in the kitchen. Due to efficiency issues, existing filters are of the mesh type or baffle type. In this paper, CFD analysis is carried out to select a filter with low pressure loss and low efficiency, and to attach the sub-filter to improve efficiency. The results of the analysis on the collection efficiency and pressure loss of three sub-filters, i.e., circle type, droplet type, and cone type, showed that the collection efficiency was 64.09% and the pressure loss was 1.26 mmAq when the circle type sub-filter was applied. The position of the sub-filter showed the best efficiency and pressure loss when it was located at the bottom of the center of the gap of the main filter.

Optimum Hydraulic Oil Viscosity Based on Slipper Model Simulation for Swashplate Axial Piston Pumps/Motors

  • Kazama, Toshiharu
    • Journal of Drive and Control
    • /
    • v.18 no.4
    • /
    • pp.84-90
    • /
    • 2021
  • Viscosity of hydraulic oils decreases due to loss reduction and efficiency increase of fluid power systems. However, low viscosity is not always appropriate due to the induction of large leakage and small lubricity. Therefore, a detailed study on the optimum viscosity of hydraulic oils is necessary. In this study, based on the thermohydrodynamic lubrication theory, numerical simulation was conducted using the slipper model of swashplate-type axial piston pumps and motors. The viscosity grades' (VG) effects of oils on power losses are mainly discussed numerically in fluid film lubrication, including changes in temperature and viscosity. The simulation results reveal that the flow rate increases and the friction torque decreases as VG decreases. The film temperature and power loss were minimised for a specific oil with a VG. The minimum conditions regarding the temperature and loss were different and closed. Under various operating conditions, the film temperature and power loss were minimised, suggesting that an optimum hydraulic oil with a specific VG could be selected for given operating conditions of pressure and speed. Otherwise, a preferable operating condition must be established to determine a specific VG oil.

Flow Characteristics of Polluted Air in a Rectangular Tunnel using PIV and CFD

  • Lee, Yong-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.5
    • /
    • pp.609-617
    • /
    • 2012
  • The flow characteristics of polluted air are analysed by comparing the results obtained from PIV(Particle Image Velocimetry) experiment and CFD(Computational Fluid Dynamics) commercial code. In order to simulate the polluted air flow, the olive oil has been used as tracer particles with the kinematic viscosity of air, $1.51{\times}10^{-5}m^2/s$. The investigation has done in the range of Reynolds numbers of 870, 1730 and 2890 due to the inlet flow velocities of 0.3, 0.6, and 1.0 m/s, respectively. The average velocity and the pressure distributions are comparatively discussed with respect to the three different Reynolds numbers. The results show that the outlet flow rates at three different Reynolds numbers are equivalent of 165 to 167 percent of the inlet ones. The pressure drop occurs in the model closed at both end sides and the highest pressures at each Reynolds number are positioned at the top of the tunnel between the inlet and outlet.

Three-Dimensional Flow Characteristics in a Linear Turbine Cascade Passage (선형 터빈 케스케이드 통로에서의 3차원 유동 특성)

  • 차봉준;이상우;이대성
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.12
    • /
    • pp.3148-3165
    • /
    • 1993
  • A cascade wind tunnel test for a turbine nozzle, which was designed for a small turbo jet engine in a previous study, has been conducted to evaluate its aerodynamic performance and losses. The large-scale blades were based on the mid-span profile of the nozzle. Oil film flow structure, and then 3-dimensional velocity components were measured in the flow passage with a 5-hold pressure probe, in addition to turbulent intensities at mid-span of cascade exit using a hot-wire anemometer. From this study, 3-dimensional growth of horseshoe and passage vortices in the downstream direction was clearly understood with near-wall flow phenomena. In addition, secondary flow and losses associated with the blade configuration were obtained in detail.

Influences of Mach Number and Flow Incidence on Aerodynamic Losses of Steam Turbine Blade

  • Yoo, Seok-Jae;Ng, Wing Fai Ng
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.456-465
    • /
    • 2000
  • An experiment was conducted to investigate the aerodynamic losses of high pressure steam turbine nozzle (526A) subjected to a large range of incident angles ($-34^{\circ}\;to\;26^{\circ}$) and exit Mach numbers (0.6 and 1.15). Measurements included downstream Pitot probe traverses, upstream total pressure, and end wall static pressures. Flow visualization techniques such as shadowgraph and color oil flow visualization were performed to complement the measured data. When the exit Mach number for nozzles increased from 0.9 to 1.1 the total pressure loss coefficient increased by a factor of 7 as compared to the total pressure losses measured at subsonic conditions ($M_2<0.9$). For the range of incidence tested, the effect of flow incidence on the total pressure losses is less pronounced. Based on the shadowgraphs taken during the experiment, it' s believed that the large increase in losses at transonic conditions is due to strong shock/ boundary layer interaction that may lead to flow separation on the blade suction surface.

  • PDF

Flow Field Analysis of Smoke in a Rectangular Tunnel

  • Lee, Yong-Ho;Park, Sang-Kyoo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.5
    • /
    • pp.679-685
    • /
    • 2009
  • In order to simulate a smoke or poisonous gas emergency in a rectangular tunnel and to investigate a better way to exhaust the smoke, the characteristics of smoke flow have been analyzed using flow field data acquired by Particle Image Velocimetry(PIV). Olive oil has been used as tracer particles with the kinematic viscosity of air, $1.51{\times}10^{-5}\;m^2/s$. The investigation has done in the range of Reynolds number of 1600 to 5333 due to the inlet velocities of 0.3 m/s to 1 m/s respectively. The average velocity vector and instantaneous kinematic energy fields with respect to the three different Reynolds numbers are comparatively discussed by the Flow Manager. In general, the smoke flow becomes more disorderly and turbulent with the increase of Reynolds number. Kinematic energy in the measured region increases with the increase of Reynolds number while decreasing at the leeward direction about the outlet region.

Development of Atomization Spraying System for Solvent-free Paint(I) - Flow Analysis of Hydraulic Actuator - (무용제 도료용 무화 분사시스템 개발(I) - 유압 엑츄에이터의 유동해석 -)

  • Kim, Dong-Keon;Kim, Bong-Hwan;Shin, Sun-Bin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.2
    • /
    • pp.61-66
    • /
    • 2011
  • The purpose of this paper is to design a hydraulic actuator to operate under high pressure conditions. The flow characteristics under design conditions of hydraulic actuator were numerically conducted by commercial fluid dynamic code(ANSYS CFX V11). The numerical analysis was performed by transient technique according to the variation of stroke times, which was changed from 0 to 1 second by interval of 0.01. Turbulence model, $k-\omega$ SST was selected to secure more accurate prediction of hydraulic oil flow. The ICEM-CFD 11 and CFXMesher, reliable grid generation software was also adapted to secure high quality grid necessary for the reliable analysis. According to the simulation results, the flow rate which was supplied to the hydraulic actuator was 30.4l/min. These results are in good agreement with design results within 3.5% error.

A Study on Flow Characteristics of Dispersive ER Fluids for Development of 3-port ER Valves (3포트 ER 밸브 개발을 위한 분산계 ER유체의 유동특성에 관한 연구)

  • Jang Mun-Jey;Jang Sung-Cheol;Yum Man-oh;Lee Dong-Guk;Kim Ki-Hong
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.125-131
    • /
    • 2005
  • The purpose of the present study is to examine the flow characteristics of ER fluids between 2 port and 3 port rectangular tube brass electrodes. ER fluid is made silicon oil mixed with $2-3wt\%$ starch having hydrous particles. Flow visualization of the ER fluids were obtained by CCD camera measuring those of the clusters using an image processing technique. This research found the flow $rate(Q_L)$ with 0 kV /mm, 0.5kV/mm and 1.0kV/mm for $Q_L\;=\;0,\;0$ and $5.73cm^3/s$. When the strength of the electric field increased, the cluster of ER fluids are clearly strong along the rectangular tube and the flow rate(Q) decreased.

  • PDF

Visualization of Flow inside a Regenerative Turbomachinery

  • Yang, Hyeonmo;Lee, Kyoung-Yong;Choi, Youngseok;Jeong, Kyungseok
    • International Journal of Fluid Machinery and Systems
    • /
    • v.7 no.2
    • /
    • pp.80-85
    • /
    • 2014
  • In this study, we visualized the internal flow of a regenerative turbomachinery using the direct injection tracer method. For visualization, the working fluid was water and the tracer was oil colors (marbling colors). Droplets were injected at the inlet of the machinery and the streak were recorded using a high-speed camera with high-power light sources. While circulating inside the groove, the droplets were translated by the rotational motion of the impeller. When the droplets flow out of the impeller groove, relative to the impeller, they moved more slowly. And the droplets repeatedly reentered into the groove and circulated again. Then the droplets either flowed to the outlet or to the stripper. As a result, this experiment has confirmed the internal circulating flow of a regenerative turbomachinery.

Analysis of Combustion Air Flow in Incinerator (소각로의 연소 공기 유동 해석)

  • Lee, Dong-Hyuk
    • Design & Manufacturing
    • /
    • v.16 no.2
    • /
    • pp.26-32
    • /
    • 2022
  • It is known that the fluidized bed incinerator, which is the subject of analysis, shows excellent performance in heat and mass transfer due to excellent mixing and contact performance between fluidized sand and fuel, and also shows relatively good combustion characteristics thanks to good mixing and long residence time for low-grade fuels. have. In this study, air flow analysis is performed to understand the characteristics of co-firing of sludge, waste oil and solid waste in the fluidized bed incinerator, flow characteristics of flue gas, and discharge characteristics of pollutants.The fluidized bed incinerator subject to analysis is a facility that incinerates factory waste and general household waste together with sludge, with a processing capacity of 32 tons/day. to be. In addition, the operation method was designed for continuous operation for 24 hours. As a result, it can be seen that the lower combustion air and the introduced secondary air are changed to a strong turbulence and swirl flow form and exit through the outlet while rotating inside the freeboard layer. The homogeneous one-way flow form before reaching the secondary air nozzle has very high diffusivity with the high-speed jet flow of the nozzle.