• Title/Summary/Keyword: Oil extract

Search Result 830, Processing Time 0.03 seconds

Functional Properties of Nutmeg (육두구의 생리활성에 관한 연구)

  • Bok, Jin-Heuing;Takeda, Yasutuki;Ando, Kouichi;Son, Jong-Youn
    • Korean journal of food and cookery science
    • /
    • v.23 no.1 s.97
    • /
    • pp.33-40
    • /
    • 2007
  • This study investigated the antioxidative and antimicrobial activities of nutmeg (water, ethanol extract and essential oil). The total phenol contents of water, ethanol extract and essential oil were 3.4%, 16.9%, and 3.2%, respectively. Hydrogen donating abilities of water, ethanol extract and essential oil at 1,000 ppm were 4.9%, 41.8% and 6.8%, respectively. The antioxidative activities in linoleic acid substrates were in the order of BHT > ethanol > extract > ${\alpha}$-tocopherol > essential oil > water extract. The antioxidative activities in linoleic acid emulsion substrates were in the order of BHT > water extract > essential oil > ethanol extract > ${\alpha}$-tocopherol. In antimicrobial activity, ethanol extract showed growth inhibition effect against Micrococcus luteus, Bacillus cereus and Salmonella enteritidis, and the essential oil showed growth inhibition effect against Micrococcus luteus. However, no antimicrobial activity of water extract was observed. The nitrite-scavenging abilities of water, ethanol extract and essential oil at 1,000 ppm were 4.5%, 28.8% and 98.8%, respectively, and the ACE inhibitory activities were 0.2%, 11.0% and 10.0%, respectively.

Effect of oil and aqueous extract of Neem (Azadirachta indica) seeds on growth of Aspergillus species and biosynthesis of aflatoxin

  • Rashid, Faraz;Naaz, Farah;Abdin, MZ;Zafar, Shadab;Javed, Saleem
    • Advances in Traditional Medicine
    • /
    • v.5 no.4
    • /
    • pp.308-315
    • /
    • 2005
  • Aflatoxin contamination is a major problem in several food crops. Aflatoxin, a mycotoxin, produced by Aspergillus flavus has gained immense concern in the scientific world because of its tremendous harmful effects. The study was focused to see the effect of oil and aqueous extract of neem (Azadirachta indica) seeds on the growth of Aspergillus and production of aflatoxin by the mold. Various amounts of neem oil $(5\;-\;50\;{\mu}l/ml)$ and aqueous extract of neem (5 - 50 mg/ml) were used both in the broth as well as the solid medium. Fungistatic (MIC) and minimal fungicidal concentrations (MFC) were found to be $10\;{\mu}l/ml$ and $50\;{\mu}l/ml$ respectively for neem seed oil. At the concentration of $5\;{\mu}l/ml$ neem oil and 5 mg/ml of aqueous extract, a significant decrease in the aflatoxin content was found in broth medium. Aflatoxin production was totally inhibited at $50\;{\mu}l/ml$ and 50 mg/ml for neem oil and aqueous extract of neem respectively, in both treatments. There was significant inhibition of mycelium dry weight by the neem seed oil. Mycelial growth was totally inhibited at $20\;{\mu}l/ml$ of neem seed oil concentration in broth, whereas it was not affected at all by aqueous extract. It can therefore be inferred that the oil and extract from the neem seed leads to inhibition of aflatoxin production while neem seed oil also significantly inhibits the mycelial growth. Neem seed oil thus can be used as potent, natural and easily available anti-aflatoxigenic agent.

Antioxidant Effect of Ether and Ethylacetate Fractions of Pueraria thunbergiana Extract on Perilla Oil (들기름에 대한 칡추출물 분획의 항산화 효과)

  • 한명주;임혜영
    • Korean journal of food and cookery science
    • /
    • v.15 no.2
    • /
    • pp.114-120
    • /
    • 1999
  • The objective of this study was to determine antioxidant effect of ether and ethylacetate fractions of 70% ethanol extract of some food (acid treated or not) on perilla oil. Each fraction of food extract was added to perilla oil and stored for 0,3,6.9,11 days at 60$^{\circ}C$. Then, the peroxide value (POV) of perilla oil samples were analyzed. Perilla oil contained ${\gamma}$-tocopherol 0.6800 $\mu\textrm{g}$/mg, ${\alpha}$-tocopherol 0.3189 $\mu\textrm{g}$/mg. $\delta$-tocopherol 0.0463 $\mu\textrm{g}$/mg, but it was easily oxidized due to high linolenic acid content. To increase yield of ether and ethylacetate fractions from each food extract, the 70% ethanol extract was treated with 0.2% H$_2$SO$_4$ and fractionized by ether and ethylacetate. Among ether and ethylacetate fractions of 70% ethanol extracts of some food, the yield of ethylacetate fraction of acid treated Pueraria thunbergiana extract was 5 times more than that of ethylacetate fraction untreated with acid. Perilla oil which added 100 ppm ethylacetate fraction of acid treated Pueraria thunbergianan extract showed low POV (44.8 meq/kg) compared to POV (80.0 meq/kg) of control.

  • PDF

Canola oil is an excellent vehicle for eliminating pesticide residues in aqueous ginseng extract

  • Cha, Kyu-Min;Lee, Eun-Sil;Kim, Il-Woung;Cho, Hyun-Ki;Ryu, Ji-Hoon;Kim, Si-Kwan
    • Journal of Ginseng Research
    • /
    • v.40 no.3
    • /
    • pp.292-299
    • /
    • 2016
  • Background: We previously reported that two-phase partition chromatography between ginseng water extract and soybean oil efficiently eliminated pesticide residues. However, an undesirable odor and an unpalatable taste unique to soybean oil were two major disadvantages of the method. This study was carried out to find an alternative vegetable oil that is cost effective, labor effective, and efficient without leaving an undesirable taste and smell. Methods: We employed six vegetable oils that were available at a grocery store. A 1-mL sample of the corresponding oil containing a total of 32 pesticides, representing four categories, was mixed with 10% aqueous ginseng extract (20 mL) and equivalent vegetable oil (7 mL) in Falcon tubes. The final concentration of the pesticides in the mixture (28 mL) was adjusted to approximately 2 ppm. In addition, pesticides for spiking were clustered depending on the analytical equipment (GC/HPLC), detection mode (electron capture detector/nitrogen-phosphorus detector), or retention time used. Samples were harvested and subjected to quantitative analysis of the pesticides. Results: Soybean oil demonstrated the highest efficiency in partitioning pesticide residues in the ginseng extract to the oil phase. However, canola oil gave the best result in an organoleptic test due to the lack of undesirable odor and unpalatable taste. Furthermore, the qualitative and quantitative changes of ginsenosides evaluated by TLC and HPLC, respectively, revealed no notable change before or after canola oil treatment. Conclusion: We suggest that canola oil is an excellent vehicle with respect to its organoleptic property, cost-effectiveness and efficiency of eliminating pesticide residues in ginseng extract.

Antioxidant and Synergistic Effect of Sesame Oil Cake Extract Treated from $\beta$-Glucosidase ($\beta$-Glucosidase 처리된 참깨박 추출물의 항산화 및 상승효과)

  • 손종연;강동우;신길만
    • The Korean Journal of Food And Nutrition
    • /
    • v.14 no.6
    • /
    • pp.591-595
    • /
    • 2001
  • The antioxidant and synergistic effects of sesame oil cake extract treated with $\beta$ -glucosidase were examined. The sesamin and sesamolin were identified from the 80% ethanol extract of seame oil cake treated with $\beta$ -glucosidase, which suggested the presence of the active substances as their glycosides in sesame seed. The contents of sesamin and sesamolin in sesame oil cake extract were about 8.32% (8,315.4 mg/100g) and 0.28% (2,824.5mg/100g) , respectively. Sesame oil cake extract showed antioxidant activity at concentrations of 50ppm, 100ppm and 200ppm, and the effect was Increased with the addition of sesame oil cake extract. The antioxidant effect of sesame oil cake extract was stronger than that of $\alpha$-tocopherol or ascorbyl palmitate, but weaker than of BHT Also, when the sesame oil cake extract(50ppm) was used in combination with $\alpha$-tocopherol(50 ppm), the sesame oil cake showed very strong synergistic effect.

  • PDF

Antibacterial activity of grapefruit seed extract and seven kinds of essential and blended essential oils (Grapefruit seed extract와 7종의 Essential oil 및 혼합 Essential oil의 항균 활성)

  • Yuk, Young Sam
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.6
    • /
    • pp.198-205
    • /
    • 2021
  • Objectives: Antibiotics help treat Vaginitis, and prolonged usage of antibiotics can lead to resistance. Methods: This study investigates the antimicrobial activity of two types of lactic acid bacteria using essential oils. After cultivation by adding grapefruit seed extract (GSE), eucalyptus, tea tree, clove bud, cinnamon, lemongrass, thyme, and ginger oils in a specific ratio, pathogenic microorganisms, namely E. coli, C. albicans, and lactic acid bacteria were released. The number of bacteria was measured using a medium suitable for the strains. Results: The essential oils and GSE inhibited pathogenic microorganisms, and the inhibitory concentration of GSE against pathogenic bacteria (E. coli, C. albicans) was confirmed. The non-inhibitory mixing ratio was also confirmed (50 μl of eucalyptus globulus (EG) oil and 50 μl of melaleuca alternifolia oil (tea tree oil, TTO) at 200 ppm GSE (pH 5.0, 5.5, 6.0)). Conclusion: Essential oils can be considered as an alternative to antibiotics because of their antibacterial properties. They are useful as auxiliary antibacterial agents for patients under long-term antibiotic treatment.

Effect of Various Natural Antioxidants on the Safflower Oil (홍화유에 대한 천연 항산화제의 항산화력 비교)

  • 이명숙;이세희;송경빈
    • Food Science and Preservation
    • /
    • v.11 no.1
    • /
    • pp.126-129
    • /
    • 2004
  • To elucidate the effect of various natural antioxidants on the safflower oil, rosemary extract, green tea extract, isoflavon, Phaffia rhodozyma extract, tocopherol, sesamol, and BRA as a control were added to the safflower oil and stored at 60$^{\circ}C$ for 4 weeks. During storage, its viscosity and antioxidative activity were determined. Viscosity of the oil increased with increasing storage period and was related with its antioxidative acvtivity. Antioxidative avtivity among antioxidants used in this study were in order of green tea extract>BHA>tocopherol>rosemary extract>isoflavon>sesamol>Phaffia rhodozyma extract. Green tea extract was the best in terms of antioxidative acvtivity. After 4 weeks, its peroxide value decreased up to 80.4% of the control, and 42.1% for acid value and 47.4% for TBA value decreased.

Effects of Basil Extract and Iron Addition on the Lipid Autoxidation of Soybean Oil-in-Water Emulsion with High Oil Content (고지방 물속 콩기름 에멀션의 지방질 자동 산화에서의 바질 추출물과 철 첨가 효과)

  • Kim, Jihee;Lee, Haein;Choe, Eunok
    • Korean journal of food and cookery science
    • /
    • v.33 no.1
    • /
    • pp.113-120
    • /
    • 2017
  • Purpose: Lipid autoxidation of a soybean oil-in-water emulsion with high oil content was studied under after basil extract and/or iron addition. Methods: The emulsion consisted of tocopherol-stripped soybean oil (40 g), citrate buffer (60 g, pH 4.0), and/or $FeSO_4$ (0.5 mg) with 75% ethanol extract (200 mg/kg) of basil (Ocimum basilicum). Lipid oxidation was evaluated using headspace oxygen content, hydroperoxide contents, and p-anisidne values of the emulsion. Polyphenol compound retention in the emulsion during oxidation was determined spectrophotometrically. Results: Addition of basil extract significantly (p<0.05) decreased reduced hydroperoxide contents of the emulsion, and iron significantly (p<0.05) increased anisidine values and decreased oxygen contents. Co-addition of basil extract and iron showed significantly (p<0.05) lower reduced hydroperoxide contents in the emulsion than compared to those of the emulsion with added iron and the control emulsion without basil extract nor or iron. During the emulsion oxidation, polyphenol compounds in the emulsion with added basil extract were degraded, but more slowlywhich was slowed degraded in the presence of iron. Conclusion: The iIron increased the lipid oxidation through hydroperoxide decomposition, and basil extract showed antioxidant activity through radical-scavenging and iron-chelation. Polyphenol degradation was decelerated by iron addition, which suggested suggests iron chelation may be more preferred topreferentially activated over radical scavenging in the antioxidant action by of basil extract in the oil-in-water emulsion with high oil content.

Performance of a Screw Press to Extract Soybean Oil and Quality of the Oil as a Fuel (스크류 프레스의 대두유(大豆油) 착유(搾油) 성능(性能)과 착유유(搾油油)의 연료(燃料) 성질(性質))

  • Suh, S.R.;Harris, F.D.
    • Journal of Biosystems Engineering
    • /
    • v.10 no.2
    • /
    • pp.47-54
    • /
    • 1985
  • Performance of a screw press was investigated experimentally with soybeans of various temperatures in order to find out a proper temperature of soybean to extract the oil by the mechanical method. Crude oil extracted by the screw press was chemically analyzed to determine a level of processing the oil for the oil to be used as a fuel for a compression ignition engine. The crude oil was degummed and dried by a plant type laboratory experimental setup to decide whether the processes are effective to improve quality of the oil as a fuel. The degummed oil and the degummed and dried oil were also chemically analyzed and were compared with the crude oil and the commercially degummed and dried soybean oil. The results are as follows: 1. In extraction of soybean oil by a screw press, heating soybeans is effective to increase oil production and to decrease energy consumption of the press. A proper temperature of soybean to extract the oil by the press was determined as about $50^{\circ}C$. 2. Soybean oil production and electric energy consumption of the press are about 83 ml and 58 Wh per 1 kg of soybeans heated to about $50^{\circ}C$, respectively. 3. The quality of crude oil produced by the press is similar to that of the commercially degummed and dried oil. The crude oil does not need to be degummed or dried for use as an engine fuel.

  • PDF

Evaluation of the Quality of Canned Seafood with Added Spice-oil Extract

  • Yoon, Ho Dong;Shulgin, Yu.P.;Lazhentseva, L. Yu;Shulgina, L.V.;Xie, Chengliang;Mok, Jong Soo;Kim, Jeong Gyun
    • Fisheries and Aquatic Sciences
    • /
    • v.18 no.1
    • /
    • pp.7-11
    • /
    • 2015
  • The influence of spice (cinnamon, allspice, black pepper)-oil extract on canned seafood quality was studied. During the processing of canned seafood, the substitution of spice-oil extract for vegetable oil (refined sunflower, corn, soybean and olive oil) resulted in a decrease in the heat resistance of spore microorganisms, making it possible to reduce the duration of sterilization for canned food to 5-10 min at $115^{\circ}C$. This reduction in the sterilization duration of canned seafood with spice-oil extract inhibited residual microflora in the product, thus reducing the deleterious effect of heating on the main food compounds while preserving protein digestibility.