• Title/Summary/Keyword: Oil and gas

Search Result 1,990, Processing Time 0.041 seconds

Decision Support Process Model for Energy Efficient Remodeling Projects focused on Building Envelope and Renewable-energy Systems (에너지절감형 리모델링을 위한 적정 대안 선정 프로세스 모델 - 건축물 외피 및 신재생에너지 시스템을 중심으로 -)

  • Shin, Young-su;Cho, Kyuman;Kim, Jae-youn
    • Korean Journal of Construction Engineering and Management
    • /
    • v.16 no.3
    • /
    • pp.91-100
    • /
    • 2015
  • An increase in energy such as natural gas, coal, oil, has occurred to a large amounts of environment impact emissions, it is necessary to reduce in the construction industry for the energy consumption. To encourage remodeling project in developed countries of the majority, on the basis of this, remodeling project in the construction industry has grown to a large amount. Results of analysis of the research related to the advanced remodeling, analysis of the economic validity in accordance with the production and process and building elapsed years of selection alternative of remodeling there has been a problem that has not been properly reflected. In this study, a decision support model that can simultaneously choose the most cost-effective and energy-efficiency alternative. Developed process model, generates a "Remodeling Solution" that combines the renewable energy equipment and envelope system, energy performance evaluation of the application of international standards(ISO-13790, DIN V 18599), perform the economic evaluation through LCCA(Life Cycle Cost Analysis) technique, circulated evaluation and configured to output the optimal Remodeling Solution. The results of applying the model developed in the case, it was confirmed that it is possible to select a choice of cost-effective energy-saving alternative. Then, developed model through this study, it is expected to be able to help highly effective remodeling alternative to selecting by decision-makers.

[$CO_2$] Emission from Carbon of Marine Fuel Oil in New Ships (신조선에서 연료탄소로부터의 $CO_2$ 배출 특성)

  • Jang Mi-Suk;Kim Eun-Chan;Moon Il-Sung;Lee Jae-Woo;Kwon Oh-Sin
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.9 no.3
    • /
    • pp.148-153
    • /
    • 2006
  • This study dealt with the measurement of exhausted gas concentration, the estimation of a combustion efficiency, and the review of IMO indexing. We concentrated on establishing the basic data to take a counterplan coping with $CO_2$ regulations. The average combustion efficiency was 98% in shop test of new engines and 96.5% in sea trial test of new ships, respectively. It would become lower for the old engine or/and ship. High combustion efficiency results in high $CO_2$ emission and low combustion efficiency results in high emission of incomplete combustion products. The efficient method reducing $CO_2$ emission without an increase in noxious air pollutants would be the development of a substitute fuel and the fuel-efficient and economical engine, and the fair play among shipping agencies in a ship speed. In reviewing of IMO indexing, it is necessary to begin by analyzing the carbon content of a marine fuel for a precise estimates.

  • PDF

Comparison of Flow Characteristics for the Development of a C-Type Strainer with Its Inlet and Outlet on a Straight Line (유입·유출구가 일직선상인 C형 스트레이너 개발을 위한 유동특성 비교)

  • Shin, Byung-kyun;Kwon, Chang-Hee
    • Journal of Digital Convergence
    • /
    • v.14 no.11
    • /
    • pp.257-265
    • /
    • 2016
  • The purpose of this study was to develop a strainer that could protect a flow system by blocking the introduction of foreign substances into the pipe of industrial or architectural facilities. Strainers are installed at the front tip of valves, machines, or pumps in the piping line of clean water, oil, or gas. There are Y-type, U-type, and T-type strainers. The study identified problems with the Y-type strainers, develop a "C-type strainer with its inlet and outlet on a straight line" as a more improved new model, and compared them in functions in a full-scale strainer test. The study conducted a full-scale strainer test according to four situations at the flow laboratory of Korea Research Institute of Standards and Science by using the old Y-type strainer and C-type strainer 50A. The test results show that the C-type strainer had a higher capacity coefficient(Kv) than the Y-type one, recording 74.9% when there was no screen, 54.5% when there were no foreign substances in the screen, 54.2% when there was a 15% accumulation of foreign substances, and 52.4% when there was a 30% accumulation of foreign substances. The investigator conducted a test only with the 50A type due to the limitations of life-size strainers, but the results demonstrate that the C-type strainer had better flow characteristics than the Y-type one.

Gas Chromatographic and Mass Spectrometric Determination of Alcohol Homologues in the Korean Folk Sojues (Distilled Liquor) (기체크로마토그래피 및 질량분석법에 의한 민속 소주중의 알코올 동족체 분석)

  • Lee, Dong Seon;Park, Hye Seong;Kim, Geon;Lee, Taek Su;No, Bong Su
    • Journal of the Korean Chemical Society
    • /
    • v.38 no.9
    • /
    • pp.640-652
    • /
    • 1994
  • This work is undertaken to determine alcohol homologues so-called fusel oil that may be present in the Korean folk sojues (distilled liquor) made from grains and to describe sample preparation and analytical method by GC-FID-MS. Solid phase extraction method for sample preparation by using porous styrene divinyl benzene polymer (Porapak Q) was compared with steam distillation and solvent extraction method. Retention behaviors of homologous series of alcohols were also studied. Log values of retention time, molecular weight, boiling point, and capacity factor of alcohols showed linear correlations to the carbon number of an alcohol, to the oven temperature, and to the dielectric constant. Components such as methyl alcohol, n-propyl alcohol, isobutyl alcohol, isopentyl alcohol, and phenethyl alcohol have been identified. The more amount of isopentyl alcohol than other alcohols are contained in the Korean folk sojues, while that of n-propyl alcohol are contained in Chinese kaoliangchiew. Degree of similarity or dissimilarity and classification of the individual samples were discussed using multivariate statistical analysis(principal components analysis) based on GC data.

  • PDF

An Analysis of Residential Energy Consumption Using Household Panel Data, with a Focus on Single and Elderly Households (가구 패널자료를 이용한 가계부문 에너지 소비행태 분석 - 1인 가구 및 고령가구를 중심으로 -)

  • Hong, Jong Ho;Oh, Hyungna;Lee, Sungjae
    • Environmental and Resource Economics Review
    • /
    • v.27 no.3
    • /
    • pp.463-493
    • /
    • 2018
  • As the population structure of Korea changes with the increase of single households and elderly households, this may have effect on domestic energy consumption pattern. Our study analyzes whether the energy consumption of single and elderly households are distinguishable from those of general households. For empirical analysis, Household Energy Standing Survey panel data and regional fixed effect model are employed. The result strongly shows that single households consume more energy than other households. The consumption of single households from 40s to 60s was the highest. On the other hand, the effect of aging was different from energy sources. Electricity consumption of elderly household was more than other age groups, while oil consumption of elderly household was less than others. Gas and total energy consumptions turned out to be not much different among different age groups.

A Study on the Development of Long-term Self Powered Underground Pipeline Remote Monitoring System (자가 발전형 장기 지하매설배관 원격감시 장치 개발에 관한 연구)

  • Kim, Youngsear;Chae, Hyun-Byung;Seo, Jae-Soon;Chae, Soo-Kwon
    • Journal of the Korean Society for Environmental Technology
    • /
    • v.19 no.6
    • /
    • pp.576-585
    • /
    • 2018
  • Systematic management during the whole life cycle from construction to operation and maintenance is very important for the seven underground pipelines (waterworks, sewerage, electricity, telecommunications, gas, heating, oil including waterworks and sewerage). Especially, it is the construction process that affects the whole life cycle of underground buried pipeline. In order to construct a new city or to maintain different underground pipes, it is always necessary to dig the ground and carry out construction and related work. There is a possibility that secondary and tertiary breaks frequently occur in the pipeline construction process after the piping constructed first in this process. To solve this problem, a system is needed which can monitor damage in real time. However, the supply of electric power for continuous operation of the system is limited according to the environment of underground buried pipelines, so it is necessary to develop a stable electric power supply system using natural energy rather than existing electric power. In this study, we developed a system that can operate the pipeline monitoring system for long time (24 hours and 15 days) using natural energy using wind and solar light.

A Study on Optimization of Perovskite Solar Cell Light Absorption Layer Thin Film Based on Machine Learning (머신러닝 기반 페로브스카이트 태양전지 광흡수층 박막 최적화를 위한 연구)

  • Ha, Jae-jun;Lee, Jun-hyuk;Oh, Ju-young;Lee, Dong-geun
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.7
    • /
    • pp.55-62
    • /
    • 2022
  • The perovskite solar cell is an active part of research in renewable energy fields such as solar energy, wind, hydroelectric power, marine energy, bioenergy, and hydrogen energy to replace fossil fuels such as oil, coal, and natural gas, which will gradually disappear as power demand increases due to the increase in use of the Internet of Things and Virtual environments due to the 4th industrial revolution. The perovskite solar cell is a solar cell device using an organic-inorganic hybrid material having a perovskite structure, and has advantages of replacing existing silicon solar cells with high efficiency, low cost solutions, and low temperature processes. In order to optimize the light absorption layer thin film predicted by the existing empirical method, reliability must be verified through device characteristics evaluation. However, since it costs a lot to evaluate the characteristics of the light-absorbing layer thin film device, the number of tests is limited. In order to solve this problem, the development and applicability of a clear and valid model using machine learning or artificial intelligence model as an auxiliary means for optimizing the light absorption layer thin film are considered infinite. In this study, to estimate the light absorption layer thin-film optimization of perovskite solar cells, the regression models of the support vector machine's linear kernel, R.B.F kernel, polynomial kernel, and sigmoid kernel were compared to verify the accuracy difference for each kernel function.

Evaluation of Distribution Characteristics for Petroleum Hydrocarbon in Groundwater by TPH Fraction Analysis (석유계 총 탄화수소(Total Petroleum Hydrocarbons, TPH) 분획분석법을 이용한 지하수 중 유류오염물질 분포특성 평가)

  • Kim, Deok Hyun;Park, Sunhwa;Choi, Min-Young;Kim, Moonsu;Yoon, Jong Hyun;Lee, Gyeong-Mi;Jeon, Sang-Ho;Song, Dahee;Kim, Young;Chung, Hyen Mi;Kim, Hyun-Koo
    • Journal of Soil and Groundwater Environment
    • /
    • v.23 no.5
    • /
    • pp.26-36
    • /
    • 2018
  • Total petroleum hydrocarbon (TPH) is a mixture of various oil substances composed of alkane, alkene, cycloalkane, and aromatic hydrocarbons (benzene, toluene, ethylbenzene, xylene, etc.). In this study, we investigated 92 groundwater wells around 36 gas stations to evaluate distribution characteristics of petroleum hydrocarbons. Groundwater in the wells was sampled and monitored twice a year. The fraction analysis method of TPH was developed based on TNRCC 1006. The test results indicated aliphatic and aromatic fractions accounted for 28.6 and 73.8%, respectively. The detection frequencies of TPH in the monitoring wells ranged in 21.6 - 24.2%. The average concentration of TPH was 0.11 mg/L with the concentration range of 0.25~0.99 mg/L. In the result of TPH fraction analysis, in aliphatic fractions were 19% (C6-C8 : 0.2%, C8-C10 : 0.4%, C10-C12 : 0.4%, C12-C16 : 0.5%, C16-C22 : 1.0%, C22-C36 : 16.6%), and aromatic fractions were 81% (C6-C8 : 1.1%, C8-C10 : 0%, C10-C12 : 2.9%, C12-C16 : 0.3%, C16-C22 : 4%, C22-C36 : 66.8%). Fractions of C22-C36 were detected in about 83% of the monitoring wells, suggesting non-degradable characteristics of hydrocarbons with high carbon content.

The Impacts of the Optimal Non-Financial Contractual Structure on the Leverage Ratio in Project Finance (자원개발 프로젝트 파이낸싱 위험완화 연구: 사업위험에 따른 비재무적 계약의 레버리지 효과 분석)

  • Lee, Changmin;Choi, Bongseok;Kim, Seon Tae
    • Environmental and Resource Economics Review
    • /
    • v.23 no.4
    • /
    • pp.643-665
    • /
    • 2014
  • We study the optimal policy of the contracual arrangement in raising the debt-to-equity ratio for oil, gas and mining project finance deals. We investigate the impact of the optimal contractual relationship between counterparties on the soundness of projects, differing in output price volatility and country risk. Key findings are: first, the existence of EPC sponsors and off-takers generally raises the debt-to-equity ratio. In particular, EPC sponsors and off-taking sponsors jointly mitigate the credit risk caused by counntry risk. Seocond, off-taking and EPC contracts jointly help mitigate the credit risk caused by the country risk, rather than the price volatility. Indeed, the contractual structure raises the debt-to-equity ratio.

Conceptual Design of the Fuel Injection Valve Tester for ME-LGI Marine Engine by Using System Engineering (ME-LGI 선박엔진용 연료분사밸브 테스터 개발을 위한 시스템 엔지니어링 기반 개념 설계)

  • Noh, Hyonjeong;Kang, Kwangu;Bae, Jaeil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.681-688
    • /
    • 2018
  • As environmental regulations have been strengthened and high fuel efficiency has been in demand in recent years, the number of ships using natural gas as a fuel is increasing. The demand for ships using LPG or methanol, which are emerging as eco-friendly vessel fuels, is also increasing. In this perspective, ME-LGI engines using LPG or methanol as a fuel have attracted considerable attention. Ships equipped with an ME-LGI engine are required to check the reliability of the fuel injection valve during shipping. This means that the development of a fuel injection valve tester is essential for the commercialization of ME-LGI engine. This study conducted the conceptual design of a fuel injection valve tester for ME-LGI engines using a system engineering process in the order of requirements analysis, functional analysis, and design synthesis. In the requirement analysis stage, the operating process of fuel injection valve was analyzed, and the necessity of checking the sealing oil leakage was then derived. In the functional analysis stage, the functions and flow of them were defined at each functional level. In the design synthesis stage, the equipment for each function was set and the process block diagram based on it was derived. In addition, preliminary risk analysis was performed as a part of system analysis and control, and safety measures were added to the conceptual design. This study is expected to be a good reference material for the concept design of other systems in the future because it shows the application process of a system engineering process to the conceptual design in detail.