• Title/Summary/Keyword: Oil air lubrication

Search Result 81, Processing Time 0.021 seconds

A Study on Oil Path Design in the Journal Bearing of a Reciprocating Compressor (왕복동식 압축기의 저널 베어링 오일 패스 설계를 위한 연구)

  • Cho, Ihn Sung;Jung, Jae Youn
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.8
    • /
    • pp.839-846
    • /
    • 2013
  • Because the performance of a reciprocating compressor in refrigeration and air-conditioning systems is influenced by the lubrication characteristics of sliding components, the lubrication characteristics between the crankshaft and journal bearing have to be researched for the design and the performance improvement of reciprocating compressors. Thus, the proper supply of lubricant for a lubrication between the crankshaft and journal bearing is essential, and an oil path for lubricant supply is installed in the shaft or bearing. However, in order to guarantee the lubrication performance of the journal bearing, it is necessary to design the position of the oil path. Therefore, it is studied to find the optimum position of the oil path by the analysis of the pressure distribution in the journal bearing. The results show that the position of the oil path is significantly influenced by the pressure distribution of the oil film in the journal bearing.

Thermal Reliability Analysis of the Bearing Units in a Centrifugal Pump (원심펌프 베어링 유닛의 열신뢰성 분석)

  • Moon, Jung-Hwan;Moon, Seung-Jae;Lee, Jae-Heon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.4
    • /
    • pp.313-320
    • /
    • 2007
  • In this paper, the experimental study has been carried out to investigate the reliability lifetime of two bearing units based on the oil temperature. Measurements for the oil temperature as well as the bearing temperature during normal operation were performed to study the effects of oil viscosity and oil submergence percentages in the two bearing units. The optimal lubrication condition to increase the lifetime of the bearing unit A was found that its viscosity and submergence percentage were VG32 and 25%, respectively. For the bearing unit B, when the oil viscosity and submergence percent were VG32 and 75%, the lubrication condition was the most efficient. Finally, the adjusted rating times of both the bearing units were calculated to be over 28,000 h, which is greater than the minimum adjusted rating times of 25,000 h. Therefore, they satisfied the regulated lifetime of API 610.

Air Cooling Characteristics of a High Speed Spindle System for Machine Tools (공작기계용 고속주축계의 공기냉각특성에 관한 연구)

  • Choi, Dae-Bong;Kim, Suk-Il;Song, Ji-Bok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.1
    • /
    • pp.123-128
    • /
    • 1994
  • A high speed spindle system for machine tools can be used to reduce the machining time, to improve the machining accuracy, to perform the machining of light metals and hard materials, and to unite the cutting and grinding processes. In this study, a high speed spindle system is developed by applying the oil-air lubrication method, angular contact ball bearings, injection nozzles with dual orifices, cooling jacket and so on. And an air cooling experiment for evaluating the performance of the spindle system is carried out. Especially, in ofder to establish the air cooling conditions related to the development of a high speed spindle system, the effects of cooling air pressure, oil supply rate, air supply rate and rotational spindle speed are studied and discussed on the bearing temperature rise and frictional torque. Also the effects of cooling air pressure, rotational spindle speed and spindle system structure is investigated on the bearing temperature distribution. The experiment on the test model reveals the usefulness of the air cooling method.

  • PDF

Lubrication Characteristics of Nano-oil with Different Surface Hardness of Sliding Members (나노 윤활유를 이용한 압축기 습동부 재질의 경도에 따른 윤활특성 평가)

  • Han, Young-Cheol;Ku, Bon-Cheol;Lee, Kwang-Ho;Hwang, Yu-Jin;Lee, Jae-Keun
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.916-921
    • /
    • 2009
  • In this study, lubrication characteristics of sliding members were compared with the change of the hardness of friction surfaces and the application of nano-oil. The materials of the specimens were gray cast iron (AISI 35, AISI 60) and nickel chromium molybdenum steel (AISI 4320). The Friction coefficients and the temperature variations of on the frictional surfaces were measured by disk-on-disk tribotester under the condition of fixed rotating speed. The friction surfaces were observed by scanning electron microscope (SEM). In the results, the friction coefficients of the disk surface were increased as hardness difference was increased. The friction coefficient lubricated in nano-oil was less than mineral oil. This is because a spherical nano particle plays a tiny ball bearing between the frictional surfaces, improved the lubrication characteristics.

  • PDF

Development of Vapor Oil for Radiator Ein Press (방열핀 프레스용 베이퍼 오일 개발)

  • 전성철;조정희
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.129-133
    • /
    • 2000
  • Vapor oil fer radiator fm press in heat exchangers of air conditioners is carefully considered as the cooling performance can be affected by the residual vapor oil on the surface of radiator fin after fin press working. In this work, vapor oil for radiator fin press was developed in consideration of several properties such as physical characteristics, the rate of volatility, hazardous properties and material compatibility. In addition, it was confirmed that radiator fin press workability adopting the vapor oil and the cooling performance of air conditioner using the radiator fin were good.

  • PDF

Study on Thermal Behavior of Motor Integrated Spindle With Air Cooling System (공기냉각 모터내장형 주축계의 열거동에 관한 연구)

  • Lee, D.W.;Park, D.B.;Park, H.K.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.8
    • /
    • pp.86-91
    • /
    • 1995
  • Recently, motor integrated spindle is often used in a high speed spindle system of machine tools in order to increase machining speed. The important problem in high speed motor integrated spindle is to reduce thermal effect occured by motor and ball bearings. In this study, the effect of heat transfer from motor is investigated. The experimental equipment is composed with oil-air lubrication method, air cooling system and angular contact ball bearings. The results show that the thermal effect in motor is larger than in ball bearing until DmN 8000,000 with air cooling.

  • PDF

A study on Geometry of Labyrinth Seal for High Speed Machining Center (고속주축용 라비린스 시일의 형상설계에 관한 연구)

  • 나병철;전경진;한동철
    • Tribology and Lubricants
    • /
    • v.13 no.3
    • /
    • pp.56-62
    • /
    • 1997
  • Sealing an oil-air mixture plays important roles to have an enhanced lubrication for high speed spindle. High speed spindles require non-contact type sealing mechanism. In this study, an optimum seal design to minimize leakage is concerned in the aspect of flow control. This paper categorizes geometries of mostly used non-contact type seals and analyzes each leakage characteristics to minimize a leakage on sealing area. Effect of minimum clearance and its position are considered according to variation of detail geometry. The estimation of non-leaking property is determined by amount of pressure drop in the leakage path assuming constant leakage flow. To simulate an oil jet or oil mist type high speed spindle lubrication, the working fluid is regarded as two phases that are mixed flow of oil phase and air phase. Both of the turbulence and the compressible flow model were introduced in CFD(Computational Fluid Dynamics) analysis. Design parameters has been induced to minimize leakage in limited space, and a methodological study on geometrical optimization has been conducted.

The Effect of PVE Oil on the Evaporation/Condensation Heat Transfer Performance of Fin-tube Heat Exchanger (핀-튜브 열교환기에서 PVE오일이 증발/응축 열전달 성능에 미치는 영향)

  • Lee, Hyun-Woo;Jeong, Young-Man;Lee, Jae-Keun;Park, Nae-Hyun
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1067-1072
    • /
    • 2009
  • In vapor compression systems which use refrigerant as a working fluid, the oil is commonly used for compressor lubrication. Since the presence of lubrication oil can change the characteristics properties of refrigerant, the oil affects the heat transfer performance of heat exchanger to a large extent. In this paper, we focus on the effect of PVE oil experimentally on heat transfer performance of the fin-tube heat exchangers which use R410A as a refrigerant. To evaluate the heat transfer performance, the refrigerant to air type test facility chamber has been used. Fin-tube heat exchanger with grooved has been tested while according to the oil mass fraction variation from nearly zero to 1.7 wt%. It was found that the low level of oil mass fraction has an obvious effect on heat transfer performance, while the high level seems no significant influence. The influence of the oil mass fraction to heat transfer performance, however, is different between evaporation and condensation.

  • PDF

The Effect of Aerated Oil Considering Live Oil Surface Tension on High-Speed Journal Bearing

  • Chun, Sang-Myung
    • KSTLE International Journal
    • /
    • v.2 no.2
    • /
    • pp.103-113
    • /
    • 2001
  • The influence of aerated oil on high-speed journal bearing is examined by classical thermohydrodynamic lubrication theory coupled with analytical models for viscosity and density of air-oil mixture in fluid-film bearing. Convection to the walls and mixing with supply oil and re-circulating oil are considered. The live oil surface tension is considered as functions of temperature, API gravity and air volume ratio. With changing eccentricity ratio, it is investigated the effects of air bubbles on the performance of a high-speed plain journal bearing. Just at the moderate eccentricity ratios, even if the involved aeration levels are not so severe and the entrained air bubble sizes are not so small, it is found that the bearing load and friction farce may be changed so visibly for the high speed bearing operation.

  • PDF

Design Characteristics of Non-Contact Type Seal for High Speed Spindle (고속주축용 비접촉 시일의 형상설계 연구)

  • 나병철;전경진;한동철
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.4
    • /
    • pp.56-63
    • /
    • 1997
  • Sealing of lubricant-air mixture in the high performance machining center is one of most the important characteristics to carry out enhanced lubrication. High speed spindle requires non-contact type of sealing mechanism. Evaluating an optimum seal design to minimize leakage is concerned in the aspect of flow control. Effect of geometry and leakage path are evaluated according to variation of sealing geometry. Velocity, pressure, turbulence intensity of profile is calculated to find more efficient geometry and variables. This offers a methodological way of enhancement seal design for high speed spindle. The working fluid is regarded as two phases that are mixed flow of oil phase and air phase. It is more reasonable to simulate an oil jet or oil mist type high speed spindle lubrication. Turbulence and compressible flow model are used to evaluate a flow characteristic. This paper considers a design effect of sealing capability of non- contact type seals for high speed spindle and analyzes leakage characteristics to minimize a leakage 7 on the same sealing area.

  • PDF