• 제목/요약/키워드: Oil Viscosity

검색결과 686건 처리시간 0.026초

대두유 첨가가 녹두전분의 이화학적 특성과 저온저장 녹두전분겔의 텍스쳐에 미치는 영향 (Physicochemical Properties of Mung Bean Starch and Texture of Cold-Stored Mung Bean Starch Gels added with Soy Bean Oil)

  • 최은정;오명숙
    • 한국식생활문화학회지
    • /
    • 제26권5호
    • /
    • pp.513-520
    • /
    • 2011
  • This study was carried out to investigate the physicochemical properties of mung bean starch and the texture of cold-stored (5$^{\circ}C$ for 0, 24, 48, and 72 hours) mung bean starch gels added with soy bean oil (0, 2, 4, 6%). The swelling power of mung bean starch added with soy bean oil did not significantly change, whereas solubility increased significantly. Soluble carbohydrate content of mung bean starch added with soy bean oil decreased without any significant differences, whereas soluble amylose content decreased significantly. In RVA viscosity, pasting temperature and peak viscosity of mung bean starch added with soy bean oil were not significantly different, whereas minimum viscosity decreased and breakdown and consistency increased significantly. In RVA viscosity, there were no differences according to concentration of soy bean oil. DSC thermograms show that onset temperature of mung bean starch added with soy bean oil did not significantly change, whereas the enthalpy increased in the case of 4% and 6% oil addition. Rupture properties of freshly prepared mung bean starch gels added with soy bean oil increased in the case of 2% and 4% oil addition, and oil addition to mung bean starch gels suppressed changes in rupture properties during cold storage. There were no significant differences in the texture of freshly prepared mung bean starch gels added with soy bean oil, whereas hardness, chewiness, and gumminess of cold-stored mung bean starch gels added with soy bean oil decreased. In the above textural charactristics, there were no differences due to concentration of soy bean oil. Thus, the addition of 2-4% soy bean oil to mung bean starch is appropriate for improving the quality characteristics of cold-stored mung bean starch gels.

유화.안정제의 종류에 따른 지방구의 입도 분포가 Mayonnaise의 유화안정성에 미치는 영향 (Effect of Size Distribution of Oil Particles with Emulsifiers and Stabilizers on the Emulsion Stability of Mayonnaise)

  • 이영엽
    • 한국식품영양과학회지
    • /
    • 제30권2호
    • /
    • pp.204-209
    • /
    • 2001
  • The effects of size distribution of oil particles on the emulsion stability of mayonnaise were studied as follows; The stability of mayonnaise has concerned closely with the viscosity and the size distribution of oil particles. Mostly, if the viscosity was increased, the stability was improved, and the distribution of oil particles was uniform and the less the variation, the more the stability. 75% of oil concentration of sample showed the highest viscosity, also the size of sample was the most uniform, compared to other concentration. Mayonnaise prepared with whole egg was unstable, and the size of oil particles was double larger than the case prepared with only the yolk. Addition of xanthan gum increased, the viscosity and the stability by centrifuge so that the more stable mayonnaise could be prepared. The result of using log-normal density function by Heldmann represented that the normal size of sample adding 0.6%-soluble starch and sample N in non-adding control was increased, while those of sample adding xanthan gum and soluble starch at the same time didn't change.

  • PDF

쿼터늄-18 헥토라이트를 사용한 Water-in-Oil 에멀젼의 유변학적 거동 (Rheological Behaviour of Water-in-Oil Emulsions using Quaternium-18 Hectorite)

  • 조완구;김병수
    • 한국응용과학기술학회지
    • /
    • 제26권4호
    • /
    • pp.407-414
    • /
    • 2009
  • Water-in-Oil (W/O) emulsions are widely used in cosmetics. However, O/W (Oil-in-Water) emulsions are generally superior to W/O emulsions in terms of stability. In this study, we investigated the changes of viscosity, the size of emulsion droplets, and rheological properties of emulsions prepared using distearyldimonium chloride (DDC), magnesium aluminum silicate (MAS) and quaternium-18 hectorite (QH). In addition to the changes of the composition, we tested the condition of homogenization including rotation per minute of the mixer and the mixing time. The viscosity of emulsions with DDC and AMS were not changed with time and the stability of emulsions was stable during the storage time. However, the fluidity of emulsions were low due to the forming gel network in the emulsions. The gelling power of the emulsions with QH was rather weaker than that of the emulsions with DDC and MAS. The viscosity of emulsions with QH was gradually reduced and the phase separation of emulsions with high concentration of oil was observed throughout the storage time, however, the stability of emulsions with DDC, MAS and QH was excellent, the fluidity of emulsions was enhanced, and the viscosity of emulsions was sustained for a long time after setting of emulsions.

오일점도에 따른 디젤엔진용 핀부시 베어링의 유막거동에 관한 연구 (A Study on the Oil Film Behaviors of Pin Bush Bearings for Diesel Engines with Various Engine Oil Viscosities)

  • 김청균;이병관
    • Tribology and Lubricants
    • /
    • 제24권1호
    • /
    • pp.21-26
    • /
    • 2008
  • A pin bush bearing is one of the most important element in the piston engine which is joined a piston to a connecting rod. A pin bush is suffered by heat and changeable repeat loads, which are come from the explosive gas heat and pressures during a reciprocating stroke. Therefore, a tribological behavior of pin bush bearings is very severe compared to other parts of a piston assembly. To keep a stable operation of pin bush bearings effectively, it would be satisfied with proper oil film strength for severe operating conditions and durability, which are strongly related to the oil film thickness, oil film pressure, and a friction loss power. The computed results show that the viscosity of engine oils slightly affects to the minimum oil film thickness and oil film pressure distribution, but is an influential parameter on a total friction loss power. Thus the low viscosity engine oils for an increased operation condition should select a high level of base oil and add a viscosity index improver as an oil film additive.

가솔린 엔진오일의 개선을 통한 연비절감에 관한 연구 (Experimental Study on the Development of Fuel-Efficient Gasoline Engine Oil)

  • 문우식;이종훈;김성환;이동호;유성춘
    • 한국자동차공학회논문집
    • /
    • 제1권3호
    • /
    • pp.46-54
    • /
    • 1993
  • In order to develop a fuel-efficient gasoline engine oil, an experimental study was conducted using an engine dynamometer, a passenger car and the SRV machine. Oil samples with different viscosity were prepared by adding several friction modifiers to select the best one and also to investigate the effect of the viscosity grade. From the study, we have developed engine oils which result in good fuel economy. The viscosity grade of 7.5W/30 was best among the oils investigated with respect to fuel economy and a fatty amine type friction modifier had the good fuel-economy property.

  • PDF

경유가 혼입된 엔진오일의 특성에 관한 실험적 연구 (Experimental Study of Diluted Engine Oil Characteristics by Diesel Fuel)

  • 김한구;박태식;김청균
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2004년도 학술대회지
    • /
    • pp.233-236
    • /
    • 2004
  • An experimental study was conducted to evaluate characteristic variation of diluted engine oil by diesel fuel and its effects on engine components. Especially, engine oil was made to have $15\%$ fuel content. To predict existing diesel fuel content in engine oil after test was used the viscosity calibration curve. About $54\%$ percent of diesel fuel in diluted engine oil was distillated by various paths related to reciprocating motion of piston and the rest diesel fuel plays an important role for decreasing engine oil viscosity. Test results show that lowered engine ell viscosity by diesel fuel dilution become a reason of increasing engine elements wear, Therefore, this caused the quantity of blow-by gas to increase and main gallery pressure to decrease.

  • PDF

윤활유의 성질이 마모특성에 미치는 영향(제1보) (The Effect of Tribological Characteristics on Lubricants Properties(The 1st))

  • 오성모;이봉구
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1997년도 제26회 추계학술대회
    • /
    • pp.86-92
    • /
    • 1997
  • When Lubricants is used under severe running condition, tribological characteristics is very important. I have studied the lubricating oil viscosity, kinds of additives and lubricating oil temperatures were changed. In order to study the effect of oil temperature on the wear of the surface, the temperature of the oil was changed for the same sample. Moreover, the temperatures of three kinds of oils which have very different viscosities at room temperature, were varied while the oil viscosity was unchanged. It was shown from the test results that wear is not greatly affected by the amount of ZnDTP antiwear agent, but E-P additives are less effective against wear than ZnDTP additives. The viscosity of lubricating oil and its tempea-ature greatly affect the wear of the surface. Combining all the wear data with those of the surface strength, it was observed that the higher the load, the lower the scratch of wear, and also in the case of the same running load, the lower the wear, the longer the life of the surface strength.

  • PDF

윤활유 성질이 마모특성에 미치는 영향(제2보) (Effects of Tribological Characteristics on Lubricants Properties (The 2nd))

  • 오성모;이봉구
    • Tribology and Lubricants
    • /
    • 제17권4호
    • /
    • pp.335-340
    • /
    • 2001
  • It was reviewed that the kinds of lubricating oil, viscosity, temperature and strength of materials affected the wear of the surface heat treatment. When lubricants is used under severe running conditions, their tribological characteristics are very important. We have studied the lubricating oil viscosity, kinds of additives and their amounts, and lubricating oil temperatures were changed. In order to study the effect of oil temperature on the wear of the surface, the temperature of the oil was changed for the same sample. It was shown from the test results that wear is not greatly affected by the amount of ZnDTP (Zinc dialkyl dithio phosphate) antiwear agent, but EP (Extreme pressure) additives are less effective against wear than ZnDTP additives. The viscosity of lubricating oil and its temperature greatly affect the wear of the surface. Combining all the wear data with those of the surface strength, it was observed that the higher the load, the lower the scratch of wear, and also in the case of the same running load, the lower the wear, the longer the life of the surface strength.

낮은 오일 농도에서 $CO_2$-Oil 혼합물의 밀도와 점성예측 (Prediction of density and viscosity for $CO_2$-oil mixture at low oil concentration)

  • 윤린
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 하계학술발표대회 논문집
    • /
    • pp.136-141
    • /
    • 2008
  • Due to environmental concerns $CO_2$ has been reintroduced as a potential candidate to replace HFCs in refrigeration systems since 1990s. In a refrigeration cycle, oil is utilized in lubricating a compressor. However, although oil separators are installed after a compressor oil is prone to leak to the whole system. The mixing of $CO_2$ and oil, even a small amount of oil, the heat transfer performance in heat exchanger deteriorated and the pressure drop inside tube increases. Therefore, it is needed to precisely estimate the mixture thermodynamic properties of $CO_2$-lubricant oil to correctly design a $CO_2$ refrigeration system. The commonly used method in estimating the mixture properties is the mole based weighting model. However, the accuracy of the method can not be assured. In the present study, $CO_2$-lubricant oil mixture properties including viscosity and density were estimated by using the mixture models, based on the equation of state (EOS).

  • PDF

유적 천목의 유적 발생 구조 (Oil Spot Generative Formation of Oil Spot Denmoku)

  • 정종혁;이병하
    • 한국세라믹학회지
    • /
    • 제43권10호
    • /
    • pp.619-625
    • /
    • 2006
  • The study was intended to investigate production tools and conditions of oil spot following calculating optimal composition of oil spot tenmoku glaze which can be produced at 1250$\sim$l260$^{\circ}C$. Since oil spot is influenced by the viscosity of glaze, viscosity of various glazes fit for oil spot production was determined by an SciGlass 6.0-based calculating method. Applied amount and calcinating conditions of the resulting substance of oil spot, $Fe_2O_3$, were analyzed. As a result, the viscosity of the glaze durable at 1260$^{\circ}C$ was found to range from 4.2 to 4.4, natural cooling was used after oxidizing calcinations at 1260$^{\circ}C$ for an hour, and the best oil spot tenmoku was produced by the natural cooling process after 1 h calcinations at 1150$^{\circ}C$ in the middle of natural cooling. Also, the study showed that thickness of glaze was found to have an effect on the production of oil spot and resulting oil spot was filled mostly with $Fe_2O_3$.